【特 集】代替エネルギーの開発状況と今後の課題

水素エネルギー開発の現状と今後の課題

Present Situation and Future Subjects on the Development of Hydrogen Energy

田 村 英 雄*

1 はじめに

地球資源の有限性が強調され、近い将来において現在のエネルギー源である石油の枯渇が予測されるとともに、新しいエネルギー源の開発が全世界において重要視されはじめた1970年頃から、水素を燃料とする新しいエネルギーシステムが提唱された。

水素は無尽蔵とも考えられる水を原料とし、これを 分解することによって豊富に製造できる可能性があり その燃焼によってエネルギーが得られしかも環境を汚 染する生成物はなく、水蒸気のみが牛成してそれがま た水となるので、水素の原料は枯渇しない。…との優 れた特性に注目して、水素エネルギーの開発に大きな 期待がかけられた、さらにその後の多くの研究によっ て、エネルギーの貯蔵にも効果的に利用できることや 現在の石油燃料とほとんど同様の広い用途に適するこ となども認められ、その評価はさらに向上している。 しかしながら基本的な問題として当初から指摘されて いた事項、即ち水を分解するのに必要とされるエネル ギーを何に求めるか、水素を安価に大量生産する製造 法は、易燃料・爆発性の気体である水素の安全で経済 的な貯蔵・輸送はどうするか、空気中での燃焼に付随 するNOxの副生を押えたクリーンな燃焼法などに関 しては、研究の進展とともに改良、開発はされてきた が、なお未解決の技術が多い、特に製造法に関しては 期待に沿う式果はほとんど認められず、これからの研 究を待つほかはない.

2 水素製造法

1)エネルギー源 水を分解して水素と酸素を得る

には、理想的な場合でも25℃ 1気圧で56.7 Kcal/molのエネルギーが必要である。このエネルギー源として将来考えられるのは、原子力か太陽エネルギーということになる。これらは後に述べる水素製造法とも関連するものであるが、原子力ではまずその分野の発展に期待する外はない。太陽エネルギーは熱と光のいずれもが、極めて密度の低いエネルギー源であるためその活用には特殊な技術の開発が必要となり、自然条件の影響も強く受けるので、地球上地域の制約が問題となる。

これらについての詳細は製造法のところで述べるが これらとの関連は図1に示すとおりである。

2)電気分解法 水酸化カリウムの水溶液を電気分解して水素と酸素を得る技術は、1800年に発明され、1902年スイスのOerlikon 社で創造された古い歴史をもっている. 水の電気分解は理論的には 1.23 Vで進行するものであるが、実際には酸素発生反応や水素発生反応における過電圧、電解液その他の電気抵抗などのために、さらに高い電圧が必要とされ、それだけエネルギー損失となりコストが高くなる.

水の電気分解による水素製造法に関する最近の研究 は、主としてこのエネルギー損失の低下と電流効率の

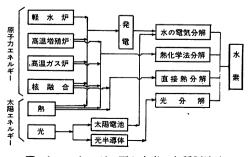


図-1 エネルギー源と水素の各種製造法

^{*} 大阪大学工学部応用化学科教授

向上を目標として進められている。

高温高圧水電解法 電気分解の温度を高くすれば、 理論分解電圧が低減され、さらに過電圧や抵抗損失も 減少する. さらに電解槽の内圧を高くすれば発生する 水素、酸素の気泡が小さくなり、気泡による電極表面 の作動面積の減少がさけられる. しかしながら高温高 圧は装置の腐食を増大するため、装置の材質、特に発 生する水素と酸素の混合を防止する隔膜材質の耐食性 の改良が必要となる.

従来の技術は常圧、80℃の条件で電気分解が行われているが、これを150℃(25kg/cm)とし、5000A/mの電流密度で電解できれば、抵抗損失は0.18V程度に止まるものと見込まれ、Teledyn社では1980~85年の目標として研究を進めている。しかし現在では国内外各所ともにまず120℃(20kg/cm)を第一の目標として、耐アルカリ性の隔膜と陽極材料の開発に努力している。隔膜にはチタン酸カリウム織維や有機物質が種々検討されており、大阪工業技術試験所ではPTFEとチタン酸カリウムからなる複合材料膜を開発した。各所の改良型電解槽の電圧一電流特性を図2に示す。

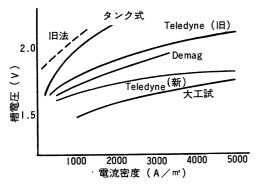


図-2 各種電解槽の特性

固体電解質法 上述の方法より更に高い温度で電気分解を行うことも考えられている。この場合は固体電解質を用い、水は水蒸気として供給されることになる。この方面の研究は米国のGeneral Electric 社が最初に開発した。同社はプロトン専電性の有機含フッ素高分子膜と、 ZrO_2 系の酸素イオン導電性セラミックス電解質の両者を検討している。後者の場合電解質の良導電域を利用するために $2000 \, ^{\circ} F(1090 \, ^{\circ} C)$ という高温で電解が行われ、その電解電流は $3260 \, \text{A/ft}^2 (3.5 \, \text{A/cm²})$,消費電力は $20KWh/1000 \, \text{SCFH}_2$ と推定された。前者はこれよりも低温($150 \, ^{\circ} C$ 付近)で電解

$$\begin{array}{c|c}
C F_3 & C F_3 \\
C F - C F & m C F_2 - C F
\end{array}$$

$$\begin{array}{c|c}
C F_3 & C F_3 \\
C F - C F & m C F_2 - C F
\end{array}$$

$$\begin{array}{c|c}
C F_3 & C F_3 \\
C F_3 & C F_3 \\
C F_3 & C F_3 \\
C F_2 - C F
\end{array}$$

$$\begin{array}{c|c}
C F_3 & C F_3 \\
C F_2 - C F
\end{array}$$

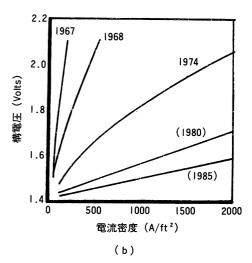


図-3 SPEの組成と電解性能の推移

しようとするもので、GE社は1974年に図3(a)の如き組成の高分子電解質を用いて研究を行い、酸性電解液の場合図3(b)に示すような性能の向上が得られている。この方法の特徴は槽の寿命が永いことで、1000~1400 A/ft²の電流密度で、220°~90°Fの電気分解で12,000時間以上の連続電解が出来ていると発表されている。この方法はSPE水電解法と呼ばれ、わが国でも検討され、陽極触媒としてIrが高活性であることをみつけ、この電極と電解質膜との接合法を改良して、ミニセルからさらに大型実験用電解槽の開発が計画されている。

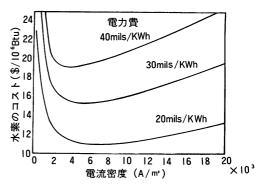


図-4 電解水素の最小コスト

こうした水電解法の改良はGE社だけでなく、BBC、CJB、Electrolyzer Corp. Lurgi Apparate - Technik GmbH,Oronzio de Nora、Teledyne社などが強力に開発を進めている。しかし現段階で決定的な方法は定まらず、したがって経済的な評価もできないが、Teledyneで発表した電解法水素の現在技術での最小コストは図4の如く算出されている。

3) 熱化学法 水を加熱して分解すれば水素と酸素が遊離してくるはずである. この反応を熱力学的に計算すれば2800°K(2527°C)以上の高温が必要とされる実験的には3200°Cで約34%の分解が認められている. これを実際に行うには装置の材料に関して殆んど実施不可能の方法ということになる. しかし反応をいくつか組み合わせて, 水の分解以外は閉じた系とすれば,1300°K(1027°C)以下の温度で水を水素と酸素に分解できることは立証されている. そこで将来高温原子炉や太陽熱などを利用して, この方法を具体化しようとしているのが多段熱分解法による水素の製造法である. これについては欧州原子力共同体(EURATOM)のIspra研究所が原子炉の熱利用を目的として,1960年代の末から研究を開始して,Mark1と称する4段の反応を発表した. (表 1)

その後 Ispra からも他の多くのサイクルが提案され さらに各国の研究者から膨大な数のサイクルが発表さ れている.

しかし現在の処で満足できるサイクルの数は少なく各反応の反応率が100%で、反応速度も十分に大きくかつ操作が容易で最高温度も余り高くない、という理想的なサイクルは認められていない。特に電解法に比して工程が複雑であり、装置材料の腐食問題も関係して技術的に困難な問題が指摘されている。

サンシャイン計画では表1中の4つのサイクルが取り上げられていて、一応各段の反応特性、最適反応条件などについて明らかにされ、今後各段をクローズドとして連続装置化のための化学工学的研究に進んでいる。

熱化学法は工業的に展開できる可能性のある方法として注目されながら、現状ではその開発にやや行詰った観があり、世界的にその研究の展開が低迷している。
4)その他の方法 最も簡潔な方法として直接高温による水の熱分解法が考えられる。例えば原子力や太陽熱の利用であるが、わが国ではキセノン・アークイメージ炉による1000 ℃以上での水の熱分解特性について、基礎的研究を進めている。タンタル板上にジルコ

ニアを溶射した板を受光面として、この面で水蒸気の 高温加熱を行い、パラジウム薄膜を介して水素の集収 を試み、1000°K 10分で300 ccの水素が検出されてい る.さらにセラミックの酸素イオン輸送特性を利用す る分離法についても検討を進めている. 太陽光による 水の分解は半導体を用いる Photovoltaic Energy Comversion による電力で、水を電気分解する方法 と、半導体の電極に光を照射して得られる光電池によ るPhotelectrolysisとがある. 前者は太陽電池の高 性能化と低コスト化ができれば、前述の水電解の技術 と結べば容易に実現できる方法であり、太陽電池の発 展を待つばかりである.後者はn型半導体のTiO2電 極をアルカリ性水溶液に,白金電極を酸性水溶液に浸 潰し、両液を隔膜を介して接触させ、 TiO2 と白金を 導線で接続してTiO2 面へ光を照射すれば, 白金極か ら水素, TiO2 極から酸素が発生し, 同時に外部回路に に電流が流れる……という極めて注目すべき方法であ り、現在多くの研究者がこの研究を進めている。しか しながら隔膜を介した酸とアルカリの溶液は、漸次拡 散渗透によって混合中和することは避けられず、また n-TiO2の寿命にも問題があり、具体的な展開には至 っていない. このセルで白金の代りにP型半導体の Gapを用い、電解液は硫酸だけにして隔膜を除けば電 池の起電力は大きくなり、酸・アルカリの混合中和問 題もなくなるが、P-Gapの寿命はTiO2よりも短く, 電池の作動時間が低下する. その他これらの半導体は 500 皿以下の短波長の光によって作動するものばかり で、太陽光のエネルギーとしては低い波長域となり、 その利用率は量子効率で 0.2 ~ 0.5 %に止まる. これら を改良するために基礎研究が活溌に展開され、より安 定な半導体や広い波長域で作動する処理法などが、つ ぎつぎに発表されているが,未だ実用的に採用できる 可能性は認められていない.

太陽エネルギーの活用が期待されているだけに、この太陽光による水の分解は最も望ましい水素の製造法と考えられているが、太陽光の地表面におけるエネルギー密度が 0.25 cal / ㎡、min と極めて低いものであるから、水素が将来燃料として大量に消費される場合、この太陽光を利用して水素を製造する方法が完成したとしても、その生産量と生産速度が果して適応し得るが、疑わしいものと思われる。

なお古くから実用されている石炭、石油のような化 石燃料を用いる水素の製造法も、燃料のクリーン化の 為のシステムとして水素エネルギーを考える場合は有

表 1 熱化学法による水素製造の反応

$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
HgO	1	Mark 1	$2 \text{ HBr} + \text{Hg} \xrightarrow{200 \text{ C}} \text{HgBr}_2 + \text{H}_2$
HgO	7		$HgBr_2+Ca(OH)_2 \xrightarrow{200 C} CaBr_2+HgO+H_2O$
			660 %
### 3 2 FeG 04 + 3 Cl2 + 12H Cl2			$6 \text{ FeCl}_2 + 8 \text{ H}_2 \text{ O}$ 650 °C → 2 Fe ₃ O ₄ + 12H Cl + 2 H ₂
GE - Agnes = G	ラ	Mark 9	$2 \text{ Fe}_3 \text{ O}_4 + 3 \text{ Cl}_2 + 12 \text{H Cl} \frac{150 \sim 200 \text{C}}{2} 6 \text{ Fe Cl}_3 + 6 \text{ H}_2 \text{ O} + \text{O}_2$
GE - Agnes	<u></u>		6 Fe Cl ₃ 420 °C → 6 Fe Cl ₂ + 3 Cl ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			3 FeCl ₂ +H ₂ O $\xrightarrow{450 \sim 750 \text{°C}}$ Fe ₃ O ₄ +6 HCl +H ₂
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Fe ₃ O ₄ + 8 HCl \longrightarrow Fe Cl ₂ + 2 FeCl ₃ + 4 H ₂ O
	(GE - Agnes	$2 \text{ Fe Cl}_3 \longrightarrow 2 \text{ Fe Cl}_2 + \text{Cl}_2$
			$Cl_2 + Mg(OH)_2 \xrightarrow{50 \sim 90 \mathcal{C}} Mg Cl_2 + \frac{1}{2}O_2 + H_2 O$
M2 S O4 M2 S O4 H12 M2 S O4 M2 S O2 H2 O2 M2 S O4 H12 M2 S O4 M2 S O4 H12 M2 S O4 M2 O + S O2 H2 S O2 M4 S O4 M2 S O4 H2 S O4 H2 S O4 M3 S O4 H12 M2 S O4 M2 O + S O2 H2 S O4 M3 S O4 H12 M4 S O4 M2 S O4 M3 S O2 M5 S O2 + I 2 + 2 H2 O M5 S O4 H2 S O4 H2 S O4 H2 S O4 M5 S O2 + B S O2 H2 S O4 H2 S O4 H3 S O4 M5 S O2 + B S O2 M2 S O4 H3 S O4 H3 S O4 M5 S O4 H2 S O4 H3 S O4 H3 S O4 M5 S O4 H3 S O5 M3 S O4 H3 S O4 H3 S O4 M6 S O4 M6 S O5 M2 S O4 H3 S O4 H3 S O4 M6 S O5 S O			$Mg Cl_2 + 2 H_2 O \longrightarrow Mg (OH)_2 + 2 H Cl$
Hallett Air Produts		Julich 研	$M_2 O + H_2 O + S O_2 \xrightarrow{200 \text{ °C}} M_2 S O_4 + H_2$
Hallett Air Produts		(西ドイツ)	$M_2 S O_4 \longrightarrow M_2 O + S O_2 + \frac{1}{2} O_2$
Produts $2 \text{ H Cl } + 2 \text{ Cu Cl} $ $\rightarrow 2 \text{ Cu Cl } 2 + \text{H}_2 $ (電気分解) $2 \text{ Cu Cl } 2 + \text{H}_2 $ (可能分解) $2 \text{ Cu Cl } 2 + \text{H}_2 $ (可能分解) $2 \text{ Cu Cl } 2 + \text{H}_2 $ (可能分解			$H_2 O + Cl_2 \longrightarrow 2 H Cl_1 + \frac{1}{2}O_2$
	l		2 H Cl + 2 CuCl 200 ℃ 2 CuCl ₂ + H ₂ (電気分解)
ヨウ素系サイクル $Mg(IO_3)_2$ $600 ^{\circ}\mathbb{C}$ $MgO + I_2 + 2.5 O_2$ $5 MgO + 10 H I$ $10 H I$ $300 ^{\circ} ^$			$2 \operatorname{CuCl}_2 \longrightarrow 2 \operatorname{CuCl} + \operatorname{Cl}_2$
## ## ## ## ## ## ## ## ## ## ## ## ##		ョウ素系サイクル	$6 \text{ MgO} + 6 \text{ I}_2 \xrightarrow{100 \sim 150 \text{ °C}} \text{Mg (IO}_3)_2 + 5 \text{ Mg I}_2$
サ 10H I 300 ~ 700 $^{\circ}$ C \rightarrow 5 H ₂ + 5 I ₂ $> 5 \text{ MgO} + 10\text{ H I}$ $> 5 \text{ MgO} + 10\text{ H I}$ $> 6 \text{ MgO} + 10\text{ H I}$ $> 700 \text{ C}$ $> 6 \text{ MgO} + 10\text{ H I}$ $> 6 \text$			$Mg(IO_3)_2 \xrightarrow{600 \text{ °C}} MgO + I_2 + 2.5 O_2$
TOH 1			$5 \text{ Mg I}_2 + 5 \text{ H}_2 \text{ O} \xrightarrow{400 \text{ °C}} 5 \text{ MgO} + 10 \text{H I}$
が、黄系サイクル $H_2 S O_4 + 2 H I$ (電池) $H_2 S O_4 + 2 H I$ (電池) $H_2 S O_4 - 2 H I$ (電池) $H_2 S O_4 - 2 H I$ (電池) $H_2 S O_4 - 2 H I$ (電池) $H_2 S O_4 + 2 H I$ (電池) $H_2 S O_$	サ		10H I 5 H ₂ + 5 I ₂
# 2 H I 700 $^{\circ}$	ン	硫 黄 系 サ イクル	SO ₂ + I ₂ + 2 H ₂ O _ 常 温 → H ₂ SO ₄ + 2 H I (電池)
$2H1$ $\longrightarrow H_2 + I_2$ $3 \text{ FeBr}_2 + 4 \text{ H}_2 \text{ O} \longrightarrow 650 °C \longrightarrow \text{Fe}_3 \text{ O}_4 + 6 \text{ HBr} + \text{H}_2$ \Rightarrow	シ		$H_2 S O_4 850 \text{ $
3 FeBr ₂ + 4 H ₂ O <u>650 °C</u> → Fe ₃ O ₄ + 6 HBr + H ₂ 数 - 臭素系 サイクル 計 $SO_2 + Br + 2 H_2 O$ <u>80 °C</u> → H ₂ SO ₄ + 2 HBr 画 H ₂ SO ₄ <u>850 °C</u> → H ₂ O + SO ₂ + ½O ₂	+		2 H I
y 鉄-臭素系 サイクル 計 $SO_2 + Br + 2 H_2 O$ $\longrightarrow 3 FeBr_2 + 4 H_2 O + Br_2$ $SO_2 + Br + 2 H_2 O$ $\longrightarrow H_2 SO_4 + 2 HBr$ 画 $H_2 SO_4$ $\longrightarrow H_2 O + SO_2 + \frac{1}{2}O_2$	1		
計 $SO_2 + Br + 2 H_2O$ 80% $H_2SO_4 + 2 HBr$ 画 H_2SO_4 $H_2O + SO_2 + \frac{1}{2}O_2$	ン		
in $H_2 S O_4$ $850 °C$ $→ H_2 O + S O_2 + \frac{1}{2}O_2$	計		$SO_2 + Br + 2H_2O \xrightarrow{80 \text{ C}} H_2SO_4 + 2HBr$
	画		050 %
2 FeSO ₄ + I ₂ + H ₂ SO ₄		ハイブリッド サ イ ク ル	2 FeSO ₄ + I ₂ + H ₂ SO ₄ _ 常 温 → Fe ₂ (SO ₄) ₃ + 2 H I (光反応)
^1/1/995			400 - 450 %
Fe ₂ (SO ₄) ₃ +H ₂ O 常温 → 2 Fe SO ₄ +H ₂ SO ₄ +½O ₂ (電気)			電信 1

効であるが、本来の目的としてはやや外れた方法であるので、此処で述べることは省略する.

3 水素の輸送・貯蔵法

水素は現在殆んど高圧気体として輸送・貯蔵されて いる. その場合安全のため高圧容器に詰められ、その 取扱いに関しては厳しい規制がされ、しかも容器の重量は内容の水素ガス量よりはるかに重く、不経済な状態にある。

水素エネルギーシステムでは、連続的な大量の輸送 はガスのパイプ輸送が考えられている。エネルギーの 輸送コストについてアメリカの算出によれば表2のと

表2 エネルギーの輸送コスト

	コスト (\$/10 ⁶ Btu)			
輸送法	長距離 の輸送	局地的 配 送		
メタンのパイプ輸送	0.030	0.60		
水素のパイプ輸送	0.033	0.66		
電力の送電線輸送	0.21	2.55		
ガソリンのタンカー輸送	0.10	0.70 *		

^{*}トラック輸送の場合

おりであって、メタンと水素のパイプ輸送は非常に安価で有利である.なおパイプ材質の水素の浸透による脆化の問題も、既に水素含有量の高い都市ガスの輸送も実施されていることから、基礎資料も集められていて、安全性は認められている.したがって水素ガスのパイプ輸送に関する限り、その具体化には問題は一応ないように考えられている.その外の輸送・貯造法として考えられているものに、液体水素として取り扱う方法と、ある種の金属に吸収させて固相化する方法とがある.

液体水素は1898年にSir James Dewar が初めて作ったものであるが、その沸点は20.3 K (-252.7°C)、密度は70g/ ℓ (比重で約0.07) である。この液体水素の取り扱い技術は、アメリカの宇宙開発の研究において目覚しい発展をした。大量の水素液化が可能の装

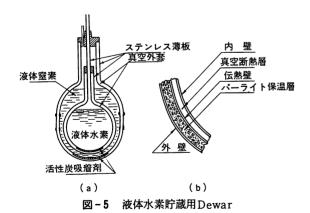


表3 大型 Dewar の容積と性能

容積(ℓ)	断 熱 法	1日当りの 蒸発ロス(%)
3.4 ×10 ⁶	真空・パーライト	0.03
1.9 ×10 ⁶	" "	0.08
0.38×10 ⁶	" "	0.18
0.11×10 ⁶	" "	0.8
0.76×10 ⁶	真空•多層断熱	0.07
0.05×10 ⁶	" "	0.22

置も既に実用されているし、貯蔵容器としてのDewar も設置されている。Dewar 容器の構造は原理的には 図 5(a)の如きもので、さらに最近では(b)の断熱保冷壁 や真空多層断熱(アルミニウム箔に断熱性ポリマーを 塗布したものを、数インチの厚さに重ねて断熱層としてれを真空の二重壁内に詰めて保冷層としたものなど も製造され、表 3 に示す大きさの貯蔵用タンクも実用されている。また運搬用の特殊トレーラーも稼動して おり、液体水素のパイプ輸送技術も確立されていて、未だ問題となるような事故も発生していない。

このように液体水素に関する技術は、現在において 既に実用的な程度にまで開発されており、さらに保安 管理の面も整備されて、特殊な問題も指摘されていない。

しかしながら水素エネルギー・システム全般の立場からみて、果して液体水素の経済性に関する論議は、未だ定着していない、既ち何れの製造法においても水素はガス状で生産されるから、これを極低温の液体とするために要するエネルギーと貯蔵法に特殊な Dewarを必要とし、これが相当高価なものであることなど、将来に開発される特殊な用途に限定されて、この液体水素が利用される可能性が考えられる要因を持っている。

金層水素化物は新しい水素の貯蔵用媒体として注目 されているもので、この場合は常温で水素が金属中に 吸蔵されているため、固体として取り扱うことができ ることに大きな特徴を持っている。しかも表 4 に示す

表 4 各種金属水素化物の比較

	水素ガス	液体水素	V H 2	Mg ₂ NiH ₄	Mg H ₂
密 度(g/mℓ)	0.0072	0.072	5.0	2.57	1.45
有効水素量(g/mℓ)	0.0072	0.070	0.105	0.085	0.110
" (wt %)	100	100	2.1	3.3	7.6

(何れも容量重量は計算外)

ように、容積当りの水素量は液体水素よりも多いもの もあって、貯蔵容器も簡単で軽いものとなることが期 待される。

この金属水素化物が水素貯蔵用媒体として実用され るための, 要望される特性としては、(1)水素含蔵量が 大きく、(2)水素化物生成反応における消費エネルギー が少いこと - 一般には発熱反応であるから、その生成 熱が小さいこと一、(3)常温附近での解離圧が一気圧内 外で、しかも常温より余り高くない温度(100℃以下 程度) で高い解離圧を持つこと、(4)水素化物の牛成・ 解離の速度が十分に速く、可逆的であり、(5)繰り返し 使用に耐えること(殆んどの金属水素化物は解離によ り微粉化する),(6)合金の比重がなるべく小さく,か つ安価なこと、などであり、さらに合金を調製してこ れを水素化する初期段階において、活性化処理する必 要のある場合も少くないので、この活性化が簡単か、 もしくはそれの必要のないものであることも重要な特 性である. 現在までにアメリカでFeTi, オランダで LaNis などの合金が開発され、特にFeTi 合金は Fe Ti H₂ の水素化物を常温で生成し、50~60℃で10 気圧以上の解離圧を示す優れた特性を持っている. し

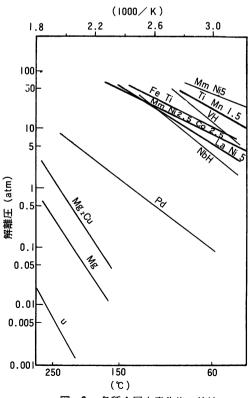


図-6 各種金属水素化物の特性

かしながら活性化が複雑である欠点がある。後者は一 応満足できる特性の合金であるが、前者よりも比重が 大きく、かつ高価な点で問題がある。

代表的な各種金属水素化物の特性を図6に示す。

わが国のサンシャイン計画による研究では $MmNi_{2.5}$ $Co_{2.5}$ (Mm は希土類混合金属ーミッシュメタルーをいう), Mg_2Ni , $MmNi_{4.5}$ $Mn_{0.5}$ などを開発し,据置式水素貯蔵用ならびに輸送用容器の試作を進めている.なお前述のFeTi 合金はその後 $FeTiMn_x$ の 3 成分合金として,活性化,微粉化の特性が改良されて小型ボンベ詰 AHT-5 が試作され,市販されている.しかしながら全重量当りの水素量は 1.24%で,現在の高圧ガス(ボンベ詰)と同程度に止まり,なお改良が要望されている.

4 水素の利用技術

水素の総合的活用は、水素エネルギー・システムの 展開において重要な課題であり、それを分類すると、

- (1) 水素のエネルギー源としての活用
- (2) 水素の化学ならびに工業全般にわたっての原料 材料としての活用

の二者になる. 特に将来(2)の分野を本システムの中へ組み入れることは、いわゆる新しいコンビナートの構成に相当して、その分野の展開にも効果的なものと考えられるものである. しかし此処では水素に関する新しい技術の開発とや、異質の分野と考えられ、製造と輸送・貯蔵の技術が確立されれば、それ以降は各専門分野の技術に含まれるものとして、詳細は省略して(1)の分野についてのみ紹介することにする.

水素燃焼の技術 水素を化石燃料に代るクリーンな 燃料として利用する場合,まずその燃焼特性を明らかにすることが重要である。これに関しては既にかなり詳細に解明されていて,表5のように他の燃料と対比されている。

このように水素の燃焼では、燃焼温度(火炎温度に相当)が高くかつ火炎伝播速度が極めて早いことが特徴的である。そのために前者はNOxの生成を伴い、クリーンフューエルとしての価値を下げ、後者は危険な逆火現象を起す原因となる。これに対して種々検討が進められているが、わが国での研究によると各種燃料のNOx発生度の比較では、次のような発生序列が明らかにされた。

C 重油 ≥ H₂(拡散炎) > B 重油 > A 重油 > L P G > 灯油 > メタン > 都市ガス > H₂ (予混合炎)

表 5 各種燃料の燃焼特性

	着 火 エネルギー (10 ³ ジュール)	着火 温 度 (℃)	火 炎 温 度 (℃)	最大火炎 伝播速度 (cm/sec)	爆発限界 (%)
水素	0.02	585	2,140	280	4.1 ~ 74.2
メタン	0.3	580	2,000	34	5.3 ~ 14
ガソリン	0.25	530	_	< 30	5 ~ 20

一方予混合燃焼は逆火現象が多発し、拡散炎ではそれが皆無となる、というジレンマが生じる。これに対して擬似予混合法を用いたラッパノズルの開発により逆火を避けかつ NO_x を $30\sim50$ ppm に抑制することが可能となり、バーナーの大型化に進んでいる。この外に触媒を用いて無炎でしかも燃焼温度の規制が可能となる燃焼方式について、Pt やPd の他の新しい触媒の開発についても研究が進められていて、Co-Mn系、Co-Ni系で安価で活性の高い触媒がみつけられ触媒燃焼試験バーナーを試作して、さらにその改良が進められている。

水素・空気燃料電池 水素を空気中で燃焼して熱エ ネルギーを得る上記の方法とは別に、水素の酸化、酸 素の還元反応を電池の起電反応として、直接電気エネ ルギーを得る水素・空気燃料電池の開発は、水素エネ ルギーの有効利用の点で重要な課題となっている. 燃 料電池の基礎研究は既に相当の成果が世界的に積み上 げられていて, 実用化あるいは商業化のための技術的 な確立が問題となっている. この面ではアメリカでの 開発が進んでいて、ターゲット計画とかFCG-1計 画で天然ガスを改質して生成する水素を利用した燃料 電池による発電所を,局地的な分散型発電所として実 用化することが、進行しつつある. 特にリン酸を電解 質とする電池ではDOE-GRI系の40KW, DOE - EPR I 系の45 MW発電実証プラントが、1980年 には試運転にはいる予定になっており、FCOFプロ グラムは1980年のはじめに同じく 4.5 MW 実証プラン トを完成して、2200時間のテスト運転に入ると発表さ れている. この外に石炭を利用する溶融炭酸塩燃料電 池も開発が進められ、EPRIは1980年に20KWの群 電池を, POEは1982年までに500 KWの発電装置の 開発を計画している. 日本の技術開発は若干遅れてい て、アルカリ水溶液を電解質とする電池とジルコニア 固体電解質の電池について大型化のための開発研究が 行われ、前者では8セル積層型電池を試作して、交流 系との系統連系についても検討されている。さらに工

業技術院のムーンライト計画では、1990年に完成を目標に数万KWの燃料電池発電システムの開発を進めている

水素エンジン 水素を燃料とする内燃機関に、主として自動車原動機として考えられ、既に試走車も発表されてその基礎的な問題は検討を終えた観もある。従来のガソリンエンジンの点火装置を改良する程度でも駆動すると発表されているが実用化のためには、なお相当の研究が必要である。しかし水素自動車を実現するためには、燃料の水素の塔載方法が大きな問題であり、液体水素とするか、金属水素化物を利用するか、などはそれらの技術の発展にまつと同時に、燃料供給システムとしての研究開発が具体的に進展している。

またアメリカでは液体水素による超音速旅客機の開発が進められ、1985年にはその試作機のテストにはいる計画が発表されている.

5 水素の保安対策技術

水素の取り扱いに関する保安関係は、爆発性高圧が スに関する問題としてのみ、規制されていたのがこれ までの状態である。アメリカでは既に液体水素に関す る規制も詳細に制定されているが、わが国ではこれに 関しても未だ確立されていない。

サンシャイン計画では、水素の製造、輸送、貯蔵および利用に際しての保安上の問題を明らかにすることと、災害防止のための技術開発の基礎研究を強力に展開している。既ち液体水素の爆発現象や金属水素化物の発火性、燃焼性ならびに微粉化による粉じん爆発の危険性などが、かなり詳細に解明され、その対策について検討されつつある。他方水素による金属材料の脆化現象も、主として実用化の立場からステンレス系材料に関する多くのデータが作られ、新しい材料の採用も検討されている。

今後実用条件を考慮した規格化された材料試験法の 確立に進む計画もある。

6 今後の課題

水素エネルギー・システムの導入は、化石燃料資源の観点からすれば、資源に恵まれない日本こそ最も切実に要望されるものである。その上単位面積当りのエネルギー消費量が、世界でもずば抜けて高いことから燃料の廃棄ガスによる大気汚染が極めて激しい実情も加えて、クリーンフューエルとしての水素燃料の活用は上述の問題と共に一石二鳥の効果を得るものである。しかしながら現実にはその経済性に大きな障害があり、未だ決定的な水素の製造法の見通しが立たず、現状で推定する限りでは水素のコストは化石燃料より相当高価なものとなる。さらにまた水素を製造するのに必要とされる一次エネルギー源を何に求められるか…?という問題も未解決で、太陽エネルギーにしても、原子力にしてもその可能性はなお将来の問題となっている。

したがって周辺の技術が上述のようにかなり先行して開発されているから、水素の理想的な製造技術が完成されるまでは、過渡的に容易な水素源——例えば石炭や炭化水素燃料の改質によるもの——を利用してでも、好ましく、有利と思われる分野への水素の活用を具体化させる努力が切に望まれる。

こうした意味で新しい水素の製造法の開発は、最も 基本的な課題として強力に展開せねばならない。それ と同時に輸送・貯蔵法の研究も基礎的なもので、これ だけでも解決すれば水素の活用は急速に展ける、とも 考えられるものである

こうした新しいエネルギー・システムの開発という 広範囲の研究を,総て平行的に進めるよりも,重点的 に問題点を解決してゆくことが,その解決を早めるこ とになるものと考えられる.

(以 上)

