集 重質油対策技術の開発

我が国のみならず先進諸国においては、原油価格の

高騰によって脱石油化が進行しているが、それは主と

して石油製品中の重質燃料油分の代替であり、石油製

品需要構成は軽質化を指向している。その傾向は図-1¹⁾

この様な石油製品需給構成の変化に加えて、原油の

重質化傾向は、重質油分解技術の必要性を極めて高い

重質油分解技術には熱分解技術、水素化分解技術、

接触分解技術等があり、それぞれの特色に応じて石油

含まれているのが一般であり, 重質油分解技術の選択

に重要な因子とされており、重金属分の除去あるいは

燃料費

製品需給構造の変化に対応して行くことになろう。 重質油中にはイオウや触媒に有害な重金属分が多く

重質油の熱分解と副生コークスを 利用した還元鉄製造技術

A Combination Process of Residual Oil Thermal Cracking and Sponge Iron Production with By-Product Coke as Reducing Agent

> 森憲二 Kenji Mori

その影響を受けにくい分解技術の完成が開発の一つの 方向と考えられている.

触媒を使用しない熱分解技術は,重金属分の影響を 受けにくい方法であり,欧米諸国においては接触分解 に次いで大きい処理能力を持っている(表1)²⁾.熱分解 技術のうちコーカーは比率が最も高く,とくにアメリ カにおいて多く用いられており,タールサンド油等の 超重質油の処理にも実績があり,今後引きつづいて活 用されるべき方法であろう.

コーカーから副生されるコークスは石炭にくらべて 熱量が高く,灰分が少ない点で有利な反面,低イオウ 原油を原料とする場合を除いては一般にイオウ分が高 く,利用面での制約を受ける.したがってその用途が 見出されれば重質油分解技術としての評価は一層高く なるものと考えられる.

こゝに述べるプロセス(KKIプロセス)は、この

*(株)神戸製鋼所開発企画部エネルギー担当部長 〒100 東京都千代田区丸の内1-8-2 図-1 各国の石油製品需要構成の変化¹⁾

特

1. はじめに

によって明らかである.

ものにしている.

.00 東京都十代田区丸の内1-8-2

											(単位	.∶∓B/D,%)
		<u>熱</u> サーマル	日 ビスブレ	解 コーカー	水素化分解	接触分解	合 計	合計 (接触分解ベース)	接触改質	原油処理	分解能力比	分解能力比 (接触分解ベース)
		クラッカー	ーカー	1			(1)	(2) 注)		(3)	(1)/(3)	(2)/(3)
フランス	80年	45	22	0	14	204	285	252.5	433	3,341	8.5	7.6
	8185年	19	25	0	0	67	111	87.2	4	2,506	4.4	3.5
西ドイツ	80	139	155	88	54	182	618	467.0	400	3,021	20.4	15.4
	81-85	63	△ 15	△ 3	47	9	101	85.9	75	2,266	4.5	3.8
イタリア	80	18	106	1	27	194	346	275.8	434	4,092	8.4	6.7
	81 - 85	58	198	20	14	92	382	236.7	47	3,069	12.4	7.7
オランダ	80	50	63	0	0	75	188	127.0	212	1,827	10.3	6.9
	8185	2	95	0	0	76	173	113.9	0	1,370	12.6	8.3
イギリス	80	88	37	0	27	194	346	286.1	434	2,630	13.2	10.9
	81-85	14	31	60	14	100	219	195.9	2	1,972	11.1	9.9
合 計	80年	340	383	89	122	849	1,783	1,408.4	1,913	14,911	12.0	9.4
	81-85年	156	334	77	75	344	986	719.6	128	11,183	8.8	6.4
アメリカ	80	395	161	1,044	912	5.531	8,043	7,867.7	4,051	18,465	43.6	42.6
	81-85	3	232	321	156	360	1,072	948.1	366	13,849	7.7	6.9

表1 欧米諸国の分解能力比 (80~85年)²⁾

出所) 転換装置能力は Hydrocarbon Processing, 原油処理能力は OGJ より作成.

ビスブレーカー	0.25	0.39
コーカー	0.65	1.02
水素化分解	0.70	1.09
接触分解	0.64	1.00
。85年の原油処理能力は80年前	も力の75%と仮定し	<i>」</i> た.

様な観点に立って重質油対策技術研究組合のプロジェ クトの一つとして,神戸製鋼所,興亜石油,出光興産 の3社によって開発中のプロセスである³⁾.

KKIプロセスは減圧残油などの重質油の流動床熱 分解プロセスと、鉄鉱石の直接還元プロセスを組合せ た方法で、重質油と鉄鉱石を原料として中間留分およ びナフサ留分を含む軽質油製品と電気炉製鋼法などの 原料となる還元鉄を生産することを目的としている.

直接還元は石炭を還元剤として用いる方法もあるが, 一般的には天然ガスの改質によって製造される水素お よび一酸化炭素を還元剤として使用している. KK I プロセスの様に,重質残油の分解によって副生される コークスを用いて還元鉄を製造することが可能になれ ば,天然ガスは化学原料等のより有用な用途に使用す ることができよう.

2. プロセスの構成

減圧残油あるいはその他の重質油は鉄鉱石粉末を流 動媒体とする熱分解反応器中で530~590℃において熱 分解される.分解された軽質油およびガスは、反応器 塔頂より抜き出され、通常の石油精製技術によって製 品化される.鉄鉱石は反応器中で副生コークスによっ て覆われるが、同時にへマタイト (Fe₂O₃)からマグ ネタイト(Fe₃O₄)に還元される.副生コークスによって覆われた鉄鉱石粉末は,鉄鉱石予熱器に送られ, 流動状態で部分酸化を受けて加熱され,再び反応器に 輸送されて,重質油の熱分解に必要な熱量を供給する.

鉄鉱石の一部は鉱石予熱器から抜き出され,還元炉 中で還元鉄に還元される.同時に鉱石抜出量に相当す る新鉄鉱石が鉱石予熱器に供給される.

KKIプロセスには,鉄鉱石の還元炉としてはロー タリーキルンを用いる方法(B1法)と,流動床を用 いる方法(B2法)がある.そのプロセスフローを図-2 aおよびりに示した.

ロータリーキルンを用いるB1法は低イオウ重質油 に限り用いられるが,流動床を用いるB2法は,高イ オウ重質油を対象として開発中の方法で,当然低イオ ウの重質油にも使用することができる.

B1法においては、鉱石予熱器から抜き出された鉄 鉱石粉末は、バインダーとしての数%の減圧残油と混 合されたのちブリケットに造粒され、予熱器を経てロ ータリーキルンに供給される.この際炉内を還元雰囲 気に保つために外装コークスが供給されるが、還元は 主として鉱石に付着したコークスによっておこなわれ る.予熱温度は650~700℃,還元温度は1130~1150℃ である。

- 61 -

図-2 KKIプロセス・フロー概要

B2法では鉱石予熱器から抜き出された鉄鉱石粉末 は流動床ガス化炉に供給され、余剰コークスが燃焼さ れる. こゝで鉄鉱石はさらに加熱され、流動還元にお ける熱を供給する. 流動ガス化炉は酸化条件によって 流動還元における還元ガスの供給を兼ねる場合もある. 流動ガス化炉を単に加熱の目的で使用する場合には還 元ガスは、重質油熱分解時に発生する炭化水素ガスを 改質することによって供給される.

流動ガス化炉の他の目的は,還元炉に供給される鉄 鉱石粉末上のコークス量を調節することである.鉄鉱 石の流動床還元においては,還元の進むにつれて鉄鉱 石が凝集し,流動および還元の阻害されることが重要 な課題とされていた.本法のように適量のコークスに よって鉄鉱石が被覆されている場合には,鉄鉱石の凝 集を防ぐことができ,還元温度を高くすることができ るために,還元時間を短縮することができる.また過 剰のコークスを燃焼させることによって,最終の還元 工程に不要なイオウの持込みを低減させることができ る.

流動床還元された還元鉄粉は炉から抜出され,冷却 過程においてブリケットに成型される.還元鉄粉はブ リケットに成型されることによって,還元鉄の特性で ある再酸化を防止することができる.

3. 実験結果

反応器モデルを用いた鉄鉱石の流動特性,反応器と 鉄鉱石予熱器間の鉄鉱石の循環,減圧残油の熱分解, 流動床熱分解反応器から取出されたコークス付着鉄鉱 石のブリケット化,流動床によるコークスのガス化お よび燃焼,ロータリーキルンおよび流動床還元炉によ る鉄鉱石の還元実験が1979年以来ベンチスケール装置 によって進められて来た.現在30 bb ℓ/日流動床熱分

図-3 流動床減圧残油熱分解反応実験装置

	Item		Kuwait Vacuum Residu	Taching Vacuum Residue
Sp. Gr.		(15/4℃)	1.0240	0.9278
Soitening Point		°C	41.5	_
Carbon Residue		wt %6	20.4	7.92
cSt		75 ℃	_	343
Viscosity		100 °C	1390	120
		140 ℃	175	-
	Asph	altene Resin	6.1	
Composition	Resin		23.4	
Analysis	Aromatics		55.1	
wt %	Saturated Hydrocarbons		15.4	
		С	82.7	87.0
Elementary	н		10.0	12.3
wt %		N	0.36	0.39
		S	4.94	0.22
Motol		V	104	
Analysis ppm		Ni	33.0	
		Fe	16.3	

表2 供試減圧残油の性状

解パイロットプラントと小型ロータリーキルン式還元 パイロットプラントが1982年10月に完成し,実験を継 続中である.

こゝにベンチスケール装置による実験結果の一端を 紹介したい.

3.1 減圧残油の熱分解

実験は図-3に示す直径100mm, 高さ4351mmの流 動床反応器を用いておこなった.減圧残油としては大 慶およびクェート原油から得られたものを使用した. 鉄鉱石はブラジル産リオドセ鉱石を粉砕して用いた. 減圧残油と鉄鉱石の性質を表2および表3に示した.

減圧残油の熱分解生成物の収率およびリサイクル油 の熱分解生成物収率を表4に示した。熱分解生成物の 収率は原料油によって異なるが、熱分解率は低温の場 合を除いては原料油間の差は少ない。分解ガス収率は 大慶の場合若干多く、副生コークス収率は原料油中の

	Iron Ore		
		- 105 µ (%)	82.4
	Mesh	- 63µ(%)	66.7
		- 44 µ (%)	54.1
Physical Properties	Harmonic Mean Par Specific Surface Are	28 1,137	
	Real Density (g/cr	4.92	
	Bulk Density (🥢	2.40	
	Specific Heat (Kca	l∕kg ℃)	0.175(100°C)~ 0.301(700°C)
		T. F ₂	64.48
		FeO	0.11
		Si O2	5.49
		A l ₂ O ₃	1.23
Chemical	Chemical	CaO	0.06
Properties	Anal ysis	MgO	0.06
	(96)	Р	0.036
		S	0.026
		(Fe ₂ O ₃)	92.08
		(Total Oxygen)	27.75

表3 供試鉄鉱石の性状

X Oxygen Ratio in Iron Oxide

表4 減圧残油およびリサイクル油熱分解生成物の収率(Wt %)

Feed	Species	Cracking Temp. ℃	C4 ⁻	Naphtha C₅/ 200 °C	Gas Oil 200∕ 538℃	Residue 538℃+	Coke	Conv. %
Taching	VR	530	14.6	11.7	43.0	24.5	6.2	75.5
		560	20.9	17.0	35.7	20.3	6.1	79.7
		590	27.7	16.3	32.6	16.6	6.8	83.4
	Recycle Oil							
	350 ℃ +	560	12.9	7.4	49.6	24.2	5.9	75.8
	538 ℃ +	560	12.3	11.3	35.9	32.6	7.9	67.4
Kuwait	VR	540	11.3	7.5	31.0	30.7	19.5	69.3
		560	19.2	8.0	33.5	20.8	18.5	79.2
		590	25.7	7.6	28.3	18.9	19.5	81.1
	Recycle Oil							
	350 ℃ +	560	8.9	6.1	53.9	22.6	8.5	77.4

Food VR	Becycle	Becycle	Cracking	Oil products wt%				
reeu vit	oil	ratio	temperature °C	Gas C4	Naphtha C5/200	Gas 200/ 350	oil 350/ 538	Coke
Taching	350 ℃+	1.34	560	36.4	20.3	26.8	-	16.4
Taching	538 ℃+	0.38	560	24.2	14.7	16.3	33.0	10.9
Kuwait	350 ℃+	1.20	560	30.0	15.2	26.2	—	28.6

表5 减圧残油熱分解製品収率

表6 減圧残油熱分解油の性状の概要(分解温度 560℃)

Feed			Tac	hing V	R		Kuwa	it VR	
Properties	Product	C ₅ /171	171/232	232/350	350/525	C ₅ /171	171/232	232/350	350/525
Specific (15/4°C)	0.7593	0.8059	0.8514	0.9164	0.7761	0.8348	0.9169	1.0191
Viscosity	30°C			4.417		-		4.721	_
(cst)	50°C	-		2.89	_	-		2.95	507
	75℃	_	_		27.6	_		-	102
Pour Poi	nt (°C)	_		-7.5	47.5	-		-22.5	7.5
Carbon H	Residue (wt)		_	. —	3.60		_		11.5
Elemental	C (wt%)	86.8	87.0	86.9	87.2	86.9	87.1	85.3	84.3
Analysis	Н	13.2	13.0	12.7	12.0	12.8	12.4	11.3	9.5
	N	0.007	0.03	0.12	0.39	0.004	0.02	0.07	0.32
	S	0.07	0.07	0.24	0.30	0.68	1.37	4.26	5.16
	V(ppm)	_		_	<1	-	_		3.4
	Ni	—		—	<1	-	_	-	< 1
	Fe				28	_	_	-	150
FIA par	affines	14.2	18.9	35.2		15.4	18.6	23.0	-
(vol%)Ole	fins	71.3	62.3	48.8		62.0	46.9	25.4	
Arc	omatics	14.5	18.8	16.0	—	22.6	34.5	51.6	·
Octane Number	F-1)	68.0		_		72.0	_	_	
Existent Gum	g/100ml)	63		_	_	83		_	
Smoke Po	int	—	20		_		13	_	_
Cetant Nu	mber		_	53		-	_	29	_

表7 還 元 鉄 の 性 状 の 概 要

Process	Feed VR	Feed Ore	T. Fe	Fe O	M.Fe (%)	С	S	Degree of Reduction %
B ₁	Taching	Rio Doce	89.60	5.92	85.11	0.64	0.109	96. 36
B 2	Kuwait	Rio Doce	84.26	8.0	77.20	2.90	0.102	93. 10

残炭量に対応してクエートの場合に多くなっている. 熱分解温度が高くなるほど分解ガスの収率が増加し, 分解油の収率は少なくなっている.分解油の収率はク エートの場合よりも大慶の場合若干多くなっている. 熱分解実験結果から分解油中の重質留分および分解 残油をリサイクルした場合の分解収率を推定し表5に 示した.

3.2 生成物の性質

熱分解生成油と還元鉄の性質を表6および表7に示した.

熱分解生成油の性質は原料油の性質の影響を受け, クエートは大慶にくらべて流動点は高く,イオウを多 く含んでおり,芳香族性も高い.したがってナフサ留 分のオクタン価は大慶にくらべて高いが,灯油留分の 煙点,軽油留分のセタン指数はいずれも低くなってい る.重質軽油分のバナジウムおよびニッケルは,大慶, クエートともに低い価を示しているので,クエートの 場合には脱硫後,大慶の場合にはそのま、流動接触分 解(F.C.C)の原料油として使用できよう.ナフサお よび灯・軽油分は通常のコーカー生成油と同様に,製 品化するためには水素処理が必要であろう.

還元鉄の性質はイオウ分を除いては天然ガスを還元 剤として用いる通常の還元鉄と異ならない. このま、 でも製鋼原料として使用することができるが, 製鋼過 程における脱硫の負担を軽減するため, 還元鉄の脱硫 について検討中である. 流動床還元の場合には, 還元 の過程で約80%の脱硫が可能であり, 大慶の場合には 流動床還元によって市販還元鉄のレベルまでイオウ分 を低下させることが可能と考えられる. クエートの場 合には現在のところ還元鉄中のイオウは 0.1 %程度で あるが, 0.05%程度にすることを目標に検討を進めて いる.

3.3 製品収量

分解油および分解残油中 450 ℃以上の留分をリサイ クルした場合の製品収量を推定して表8に示した.収 量は原料減圧残油供給量25,000bbℓ/日,還元鉄生産量 40万 t/年を想定して試算した.

この試算は一例に過ぎないが、減圧残油の分解温度 やリサイクル油の分留温度、あるいは重質軽油分を FCCでさらに分解するなどによってかなり広範囲に 製品構成を変えることも可能である.

表	8	KK1	プロセ	スの物質	反支の概要
---	---	-----	-----	------	-------

Proce	SS	B 1	B 2
Feed	VR Species	Taching	Kuwait
	VR bbl/d	25000	25000
	Iron Ore t/d	1655	1655
	Petro. Coke t/d	l 58	
Produ	ucts t/d		
	C_4^-	878	453
	Naphtha (C5/20	0) 664	605
	Gas Oil(200/45	0) 1648	1467
	Syn. Gas (H ₂ , C	0) —	1295
	Sponge Iron	1212	1212

流動床を用いる熱分解プロセスとしてはフルードコ ーカーがよく知られている.フルードコーカーは副生 コークスを流動媒体とする点でKKIプロセスとは異 なっている.図-4にはフルードコーカーによって得られ たコークスと、コークス付着鉄鉱石の流動性の比較を 示した.粒子径はいずれも平均約80μのものを用いた. 流動性の相違は、両者の比重の差によるものと考えら れる.コークス付着鉄鉱石は、流動ガスの線速に対す る流動安定域が広い.

鉄鉱石は熱分解反応器中でヘマタイト(Fe₂O₃)か らマグネタイト(Fe₃O₄)に還元される.図-5は減圧 残油の熱分解前後の鉄鉱石のX線回折像の変化を示し ている.このことは鉄鉱石が還元炉に入る前に予備還 元されることを意味しており,還元炉の負荷を軽くす る.

B1法では生成したコークス付着鉄鉱石を減圧残油

図-5 減圧残油熱分解前後の鉄鉱石のX線回折

をバインダーとしてブリケットに造粒し,ロータリー キルン式還元炉に供給するが,鉄鉱石粉末とコークス 粉を混合して,同様の方法でブリケットにした場合に くらべて還元中キルンの中での粉化の非常に少ないこと が明らかになった.すなわち後者の場合約20%の粉化 が認められるに対して,前者はわずかに6%程度であ った.鉄鉱石と石炭などの固体還元剤を混合して造粒 し,ロータリーキルンで還元する所謂還元剤内装法は, 一般に還元速度が大であるが,粉化が多いために実用 化されていない.KKI法は粉化を少なくすることがで きるので,内装を可能としロータリーキルンによる還 元を容易にするものと考えられる.

図-6には鉄鉱石と粉砕コークスを混合したブリケッ トと、KKI法ブリケットの還元挙動を比較した.す なわち、この方法によれば還元速度は大であり、還元 時間を20分程度短縮することが可能になる.これは鉄 鉱石がコークスに被覆されているために、コークスと 鉄鉱石、コークスとバインダーの接触が良く保たれる ためと考えられる.

流動床還元炉を用いるB2法においても,鉄鉱石表 面をコークスが覆っているために,流動床還元法の最 大の問題である還元中の鉄鉱石の凝集を防止すること ができ,裸の鉄鉱石にくらべて約100℃還元温度を上 げることが可能であることは先に述べた.

図-7に鉄鉱石粉末とコークス被覆鉄鉱石の流動床に おける還元挙動を示した.この図には凝集がおこらず 90%以上の還元の可能な最高温度における還元挙動が 示されている.コークス付着鉄鉱石の場合には,通常 の流動床還元に較べて還元時間を約30分,すなわち½

図-7 流動床還元における鉄鉱石の還元挙動の比較

図-8 30bb ℓ/ 日流動床重質油熱分解パイロット プラント

に短縮することができる.

5. おわりに

すでに述べたように石油製品の需要は国際的に軽質 化を指向している上に、原油そのものが重質化の傾向 があり、さらに合成原油すなわちタールサンド・オイ ルシェール油、石炭液化油は間接石炭液化油を除いて 重質であるところから、重質油の軽質化技術は今後ま すます重要性を高めて来るものと考えられる. KK I プロセスは重質油軽質化技術開発の一環として、還元 Vol. 4 No. 2 (1983)

鉄製造プロセスとの結合によって、より経済的な軽質 化技術の開発を指向するものである。

この技術開発は重質油対策技術研究組合の発足とと もに1979年に開始され、1982年10月に図-8に示す30 bbℓ/日小型パイロットプラントの操業を開始する段階 に到達した。今後1984年3月迄にB1およびB2プロ セスによるパイロットプラントの運転をおこない、運 転条件やプロセスの詳細な構成の決定と評価を実施す る予定である。

現在までの実験結果により石油製品の収率はコーカ ーの収率に匹敵し、市販還元鉄に相当する還元鉄を併 産しうる可能性を明らかにした.また同時に重質油の 熱分解によって副生するコークスを有効に活用しうる ことを明らかにするとともに、重質油熱分解と鉄鉱石 の直接還元を結合することによって、直接還元プロセ スにおける問題点の解決と、直接還元プロセスにおけ る還元時間の短縮が可能であることも明らかにした.

現在残された問題として還元鉄中のイオウの低減が ある.この点については先にも述べたように、解決の 方策は見出されているが、今後パイロットプラント運 転の結果とあわせて、より市場性の高い製品が得られ るよう検討をつゞけて行く予定である.

本プロセスの完成によって,重質油問題解決の一助 になれば幸である.

参考文献

- 日本エネルギー経済研究所 " 産油国の下流部門への進出 状況と先進諸国の重質油対策 " 1982年6月, p. 20
 2)同日
- 3) K. Mori, D. Kaneko, M. Taniuchi, T. Morimitsu
- and R. Ijiri " A Combination Process of Residual Oil Thermal Cracking and Sponge Iron Production with By-product Coke as Reductant " Pan Pacific Synfuels. Conf. 1982, Oct., p. 574

海外国際会議予告

石炭科学に関する国際会議
(International Conference on Coal Science)

- <会 期> 1983年8月15日(月)-19日(金)
- <会 場> 米国ペンシルヴァニア州ピッツバーグ, ヒルトンホテル
- <主 催> 国際エネルギー機関

•エネルギー源技術に関する研究会と展示会

(Energy Sources Technology: Conference & Exhibition)

- <会 期> 1984年2月12日(日)-16日(水)
- <会 場> 米国ルイジアナ州ニューオーリンズ
- <主 催> 米国機械学会(ASME)

国際エネルギーおよび工学見本市(INTHERM) (INTHERM: International Energy & Engineering Trade Fair)

- <会期> 1984年3月13日(火)-17日(土)
- <会 場> 西独シュットガルト

- <主 催> CES (Overseas) 社
- 第11回エネルギー技術研究会と見本市 (Energy Technology: 11th Annual Conference & Exposition)
- <会 期> 1984年3月19日(月)-21日(水)
- <会 場> 米国ワシントン,シェラトン ワシン トンホテル
- <共 催> 米国電力研究所ほか22団体

・第19回エネルギー変換工学連合研究会

(19th Intersociety Energy Conversion Engineering Conference)

- <会 期> 1984年8月19日(日)--24日(金)
- <会 場> 米国サンフランシスコ
- <共 催> 米国機械学会ほか7団体

(個々の行事については,詳細判明次第改めてご案 内します)