■ 解 説 ■

溶融塩技術の核エネルギーシステムへの応用(2)

Applications of Molten-Salt Technology in Nuclear Energy Systems(2)

加藤 義夫* • 山口作太郎** • 中村 規男 *** • 古川 和男 **** Yoshio Kato Sataro Yamaguchi Norio Nakamura Kazuo Furukawa

前稿では,溶融塩の基本的性質と核エネルギーシス テムへの応用の基礎概念について述べた.本稿では, 具体的な応用例を取り上げてその概要を解説する.

4.2 核分裂炉への応用

(1) 溶融塩実験炉MSRE

核分裂に溶融塩の応用が最初に検討されたのは、実 に38年前の1947年のことである。それは、米国におけ るジェット爆撃機推進用原子炉の開発計画 [ANP (Aircraft Nuclear Propulsion) Program]にお いて研究が着手されたのである。そして、熱出力 2.5 MWの実験炉ARE (Aircraft Reactor Experiment) を建設し、1954年11月に臨界を達成したのであるが、 燃料塩として次のフッ化物溶融塩が用いられた。

²³⁵ UF₄ – NaF – ZrF₄($5.7 - 52.8 - 41 + \pi N$) ただし、²³⁵ Uの濃縮度は 93.4%であった.定常運転時 の燃料塩の炉出入口温度は、おのおの 860°C および 650 °C であった. この炉の目的は、上記のような高温 で強放射性燃料塩を安全に循環させ、またその炉特性 の安定性を実証することであったので、計画された実 験はほぼ 200 時間という短時間で全て終了し閉鎖され た. この実験の成功は、オークリッジ国立研究所(OR NL)の研究者に大きな自信を与えることとなり、発電 炉へ向けて溶融塩炉開発計画が意欲的に推進された. 図-1に実験炉用ARE炉の概念図を示した¹⁾.

その第1期計画ともいうべきものは,前稿でも少し ふれた溶融塩実験炉MSRE (Molten-Salt Reactor Experiment)であり,1960年に設計が開始されてい る.初臨界は1965年6月1日で,この時の燃料塩組成 は、

⁷LiF-BeF₂-ZrF₄-²³⁵UF₄

(65.0-29.1-5.0-0.9モル%)

であった.なお、²³⁵ Uの濃縮度は33%である. ZrF_4 は塩の融点を下げることおよび最悪の場合でも ZrO_2 を 沈殿させて UO_2 沈殿を防止する目的で添加された.

しかし、その後の運転結果から塩中の酸素濃度は十 分に低く維持できることが明らかになったので、ZrF4 の添加は必要でないことが分った. 1968年には²³⁵ Uを 全て²³³ U(83%濃縮)に変換し、²³³ U炉心による臨界を

図-1 航空機原子力推進実験用ARE炉の概念図

* 日本原子力研究所東海研究所燃料工学部機能材料研究室
 〒319-11 茨城県那珂郡東海村白方白根
 ** 三菱電機㈱核エネルギー開発部
 *** 石川島播磨重工業㈱技術研究所
 **** 東海大学開発技術研究所

世界で初めて達成した. 1969年には²³³ Uによる全出力 運転(7.5 MWth)に成功し、また²³⁹ PuF₃の添加(Pu -180g)による運転も行っている. そして1969年12月 12日には全ての実験計画を終了した.

その後, 1970年から1973年にかけて炉の解体作業を 行ったが空間汚染は驚くほど少なかったと報告されて いる. この点,水均質炉よりもすぐれている.

このMSREの実験から,溶融塩炉は²³³U,²³⁵Uあ るいは²³⁹ Puのいずれによっても動かし得ることが実 Salt Breeder Reactor)の概念設計研究を1968年よ 証されたのをはじめとして、燃料塩の負の反応度係数 が大きいため安定した運転が可能であるなど、炉の動 特性に関しても予測された解析結果とよく一致するこ とが明らかとなった.実験炉MSREの炉心および容器

図-2 実験炉MSREの炉心および容器4)

を図-2に示した.

(2) 1.000 MWe溶融塩増殖炉MSBRの設計研究

このようなMSREの成功を背景に、ORNLでは本 格的な 1,000 MWe 溶融塩増殖炉 MSBR (Molten-り開始し、1970年に完成させている. これは通常「標 準設計 1,000 MW MSBR」とよばれており, 溶融塩炉 を考察する場合の標準的モデルとなっている.図-3に は一流体二領域のMSBR炉本体断面図を示した. この 概念設計には、前述のMSREの設計・運転経験が牛か されていることはいうまでもない1-4)

さて,溶融塩炉は燃料物質が溶融塩で構成されてい る液体燃料炉であり,液体燃料炉と溶融塩との特色を あわせもっている.溶融塩技術の基礎については、す でに前稿で概説したのでここでは液体燃料炉としての 特徴について簡単に述べる。

液体燃料炉は、炉心の構造が簡単であり、燃料の添 加・交換などは運転中でもポンプのみによって行うこ とができるので炉の稼動率が向上する. さらに、燃料 の連続再処理が可能であり、燃料の輸送・解体および 再組立・加工などの工程が不要で、燃料の冷却期間を 必要とせず核分裂性物質保有量を減らすことができる. その他にも核分裂生成物(EP)を連続除去することができ るので, 炉内中性子の経済性と燃焼率を高くすること ができ,かつ炉反応度の温度係数が負の大きな値にな るなど安全かつ経済的にも有利な炉型である5).

その反面、技術的な問題点もいくつか指摘されてお

図-3 1,000MWe一流体•二領域溶融塩増殖炉⁴⁾

り,以下にその代表的なものを取り上げて簡単に説明 する.

(i) 溶融塩炉一次系構造材料の問題

すでに前稿(2.4節)で述べたが、構造材料として Hastelloy Nが開発され、実験炉MSREに用いられ たが、Te による粒界腐食が発見された.しかし、その 後改良型 Hastelloy N による各種試験結果から良好 な見通しが得られており、溶融塩炉用構造材料につい ては基本的には解決されたと考えてよい⁴⁾.

(ii) 遅発中性子の放出による安全性の問題

溶融塩炉は,燃料塩が炉心外を循環するため遅発中 性子は炉心外一次系でも放出されることになる.した がって,一定の反応度変化に対し炉出力の瞬発性変動 (prompt jump)が大きくなる.しかし,溶融塩炉は 余剰反応度が小さく炉制御上の問題となるような反応 度変化は起り難い上に,燃料塩の炉心内容量が小さく, 燃料塩の温度変動が追従し,燃料塩の大きな負の温度 係数効果によって出力が抑制されると考えられる.溶 融塩炉の安定性については,実験炉MSREで十分実証 されているので基本的な問題はないと考えられるが, 今後さらに詳細な解析によって確認する必要がある. (iii) 高放射線環境での一次系の保守管理の問題

一次系は燃料塩が循環するので固体燃料炉に比べる と高い放射線下で保守管理しなければならない,とい う指摘がある.しかし,これに対処する方法として近 年著しい進展をみせている遠隔操作,ロボット技術が ある.これは建設コストに対して不利であるが,燃料 加工が不要,炉構造が単純などの利点で十分に補える ので大きな問題となることは考えられない.さらに, 保守管理対象を予め合理的に配置し直接接近から遠隔 操作までの区別を設け修理交換を行うように設計する ことは十分に可能であり,このような対策によりかな り緩和される.

溶融塩増殖炉のその後については、標準設計MSBR 全体の検討を含め米国 Ebasco社を中心とする MS グ ループに委ねられた。その詳細は一部を除いて明らか ではないが、中断されたまま進展していないと思われ る、

(3) 小型溶融塩炉の構想

古川らによって提案されている「小型密閉式溶融塩 発電炉」の構想についてその概要を述べる⁶⁻⁹⁾. これ は後に述べる「加速器溶融塩増殖システム」の中の発 電炉部分でもあるが、ウラン-トリウム(²³³ U-Th) サイクルをもつ350MWth,0.9~1.0という高燃料転換

図-4 小型密閉式溶融塩発電炉炉心部

率および黒鉛材料非交換方式(したがって, 炉容器は密 封構造)などを特徴とする炉である.しかも連続再処理 技術は不要でバッチ式としているために,現在の技術 レベルで十分に実現可能と考えられる.炉心は3つの 領域に分けて中性子経済を良好にする一方,炉内構造 材料を交換不要とするために,中性子密度に限界を設 けてある.

このような小型炉は,新しい社会的要請に適合し, 現有の技術で可能であり,制御性および安全性の良さ などの特性を十分に生かす方向で期待されるであろう. 図-4には,現在考えている小型炉の概略図を示した.

4.3 核融合炉への応用

水素同位体(重水素,トリチウム)を燃料とする核融 合炉(DT炉)の研究は,近年大きな進展をみせており, プラズマ表面でのエネルギー収支がバランスするロー ソン条件¹⁰⁾が実証されようとしている.これは,日本, 米国および欧州でそれぞれ JT-60¹¹⁾,TFTR¹²⁾,J ET¹³⁾とよばれるトカマク型装置で実現されるであろ う.これは30年以上におよぶ研究の一つの到達点であ り,この実証によって核融合プラント全体のエネルギ ー収支がつり合うことを目標に核融合研究は新しく, より炉工学を意識した工学的実証段階に入っていくで あろう.

この段階では、核融合反応によって生じたエネルギ -を取出す研究や燃料としてのトリチウムの生産シス テムの研究が重要な課題として追加されなければなら ない.

さて,現在利用が考えられている核融合反応はつぎ に示すように,重水素とトリチウムを燃料とするもの 318

図-5 INTORの断面図¹³⁾

で,DT炉とよばれている.

 $D+T \rightarrow \alpha$ (3.52 MeV) + n (14.7 MeV)

この反応では、約80%のエネルギーが中性子に配分 されるのでこの回収が重要になる.また、トリチウム は天然に存在しないので、核融合炉プラントはトリチ ウム生産システムをもつ必要がある.この他の核融合 反応として、重水素のみを燃料とするDD炉の研究も 行われているが、この方は達成すべきプラズマ温度、 密度およびエネルギー閉じ込め時間などに厳しい条件 が課せられるので、より将来の炉と考えられる.

上記の機能を担う機器はブランケットとよばれ、そ れぞれの核融合炉型に応じた設計が行われている. 一 つの例として、図-5に日本、米国、欧州およびソ連の 間で共同研究されている INTOR¹⁴⁾ (International To Komak Reactor)の断面図を示す.

ブランケットはプラズマと第1壁を隔てて装置され, 上で述べた機能の他に超電導コイル等を放射線より防 護する役割をももっている.このブランケット材料とし て,液体Liや固体のLi₂Oなどの代りに溶融塩を用い る概念設計がすでにいくつか発表されており注目され ている.ここでは,磁気閉じ込め装置としてトカマク 型核融合炉,慣性閉じ込め装置としてレーザー核融合 炉について紹介する.

(1) トカマク型炉への応用

図-5にみられるように、ブランケットはプラズマを 取り囲み、プラズマからの中性子を回収すると共に熱 伝導、ふく射等によって放出されるエネルギーを回収 する¹⁵⁾.また、トリチウムの生産は以下に示す反応が 利用される.

 $^{6}\text{Li} + n \rightarrow T + \alpha (+ 4.8 \text{ MeV})$

 $^{7}\text{Li} + n \rightarrow T + \alpha + n'(-2.8 \text{ MeV})$

⁶Li との反応は発熱反応であるが、⁷Li との反応は吸 熱反応である.後者は速中性子に対する反応断面積が 大きい.この反応式で示されているとおり、一つの中 性子に対して一つのトリチウムしか生産することがで きないので、ブランケットには中性子を増倍する機能 をもたせることが必要になる.ことため Pb, Be など がブランケット中の適切な領域に配置される.

さて,以上の理由からブランケット材としてLiを含む物 質,液体Li, LioO, LioCo, LiAlOo, LioSiOaおよび Flibe (LiBe-BeF。)などが考えられる、図-5に示さ れるように、ブランケットはトロイダルコイルの内側 に位置しており、 強磁場(~50KG)中にあり、 ブランケ ットが小さくなればコイルも小さくすることができる などの理由で、 プラント全体の経済性の向上が期待さ れる、このような理由から、液体 Li の利用が考えら れるが、導電性があるため、強磁場中では大きな流動 抵抗を受ける、このために要する循環ポンプ動力は大 きく設計上の考慮が必要になる。その上、液体 Li は 化学的に活性で、構造材料や取り扱い方法などについ て新たに技術開発を行う必要がある、このような点か らみれば、LioOやFlibeを利用するブランケットは、 設計条件はかなり緩和される.固体 Li2O をブランケ ット材として利用する場合にもトリチウム回収や熱回 収のために Heガスあるいは水による熱除夫の必要が あるが、Flibeなどの溶融塩をブランケット材とすれ ば、粘性が高く、高温度での利用という点を除けば大 きい問題はない.図-6にFlibeを利用したブランケッ ト構造の設計例を示す15). この場合,液体Liのように 熱媒体およびトリチウム回収が同時に可能で、ブラン

図-6 溶融塩冷却第1壁/ブランケットの概念図18)

ケット構造は単純化できる利点がある.また、核融合 反応によって生じた中性子を核分裂反応や核分裂燃料 生産に用いるシステム(Fusion-Fission Hybrid Reactor)開発の可能性があり、ThF4や²³³UF4を燃 料塩に追加することだけですむ.

(2) レーザー型炉への応用

レーザー型核融合炉のブランケットは、磁気閉じ込 め型に比べると簡単である. これは, 核融合反応が行 われる部分にはコイルなどが不必要で,プラズマ閉じ込 め用真空容器の真空度も低くてよい(トカマク型に比べ て、 $10^2 \sim 10^5$ 異なる)とされているため、プラズマとブ ランケット間の第1壁が不要な設計も考えられている。 さらに、プラズマ側に液体自由表面を構成すれば壁面。 負荷が高くとれ、高エネルギー密度を実現できるとい う点ですぐれた炉システムが期待できるが、液体表面 の蒸発や安定性等について研究課題が残されている16). 図-7には Flibe をブランケット材としたレーザー核融 合炉の概念図を示したが、予備的な解析によれば、十分 高い増殖比を得ることができた17).黒鉛構造材が溶融 塩中で利用可能であるという特徴も見逃すことができ ない、この場合、黒鉛は中性子反射材としての役割も 担っている.

プラズマ核融合の研究は、長い歴史をもっているが 炉としての研究は開始されたばかりである。その中心 的課題であるブランケット工学の研究は今後大きな発 展が望まれている。これまでに、溶融塩技術の応用を 中心にみてきたが、前にも述べたように核分裂炉はエ ネルギーが大きいが中性子が少なく、反対に核融合炉 は中性子に余裕があるが取り出すエネルギーが小さい

図-7 溶融塩を利用した核融合ハイブリッド概念図²¹⁾

という特徴がある、そこで、核分裂と核融合の結合が 考えられ、溶融塩を十分に応用した共生炉、混成炉も 魅力ある研究課題であると信じている.

4.4 加速器増殖炉への応用

加速器によって高エネルギー陽子をPb. Uなどのタ ーゲット物質に入射し、スポレーション反応によって 多量の中性子を発生させ、これを核分裂あるいは核変 換させることにより核エネルギーおよび核燃料生産を 行う炉を加速器(増殖)炉という¹⁸⁻²²⁾.スポレーション 反応は、図-8に模式的に示したようにカスケード反応 および蒸発反応を伴った複雑な過程である²¹⁾.ここで 問題となるのは、陽子ビームの入射エネルギー、ター ゲット物質および発生する中性子数とそのエネルギー である.従来からターゲット物質としては、Pb、Be および Uなどの固体ターゲットが考えられ、高出力加 速器の開発に支えられて進展をみている.

すでに、1940年代に米国でMTA(Material Testing Acceleratar) プロジェクトで開発が始められ、 カナダのチョークリバー研究所では平和目的に長年に わたって研究開発が行われた(1952~1983).

また、これを核廃棄物の消滅処理(原子炉から出る 核廃棄物に中性子を入射し核変換を行わせることによ ってFPや超ウラン元素を処理する方法)にも応用し ようとする動きがあり、これは米国のブルックへブン 国立研究所で検討されている¹⁸⁾.

これらの概念の中で,古川らがターゲット物質とし て溶融塩を用いることを提案した.この加速器溶融塩 増殖システムについて核・熱および構造的検討を続け ており,工学的にみても多くの特徴をもっているので, 以下にその概要について述べる²³⁻²⁵⁾.

(1) 加速器溶融塩増殖炉の概要

図-9は,現在検討を行っている加速器溶融塩増殖炉の概念図を主要パラメーターと共に示している。炉容器内のフッ化物溶融塩にBeやLi,親物質Th,核分裂性物質²³⁵Uなどを含ませておき,これに1GeVの強力な陽子イオンビームを入射する。1個の入射陽子に対して30~40個の中性子の発生が期待されており、こ

図-8 スポレーション反応とトリウム原子核壊変

の中性子によって Th→ ²³³ Uの燃料増殖を行うもので, 同時に熱エネルギーも得られる。一つの入射方法とし て,線型加速器からの強力な陽子流を直接に,約1m の深さに作られた溶融塩渦流に向って入射することに

図-9 加速器溶融塩増殖炉ターゲット/ブランケット系の概念図

図-10 加速器溶融塩増殖炉システム

している. この場合,容器に満された溶融塩内でほとんどの核反応は進行し,また溶融塩は炉壁に対して照 射損傷の防護ともなっている.全て一つの流体である 溶融塩のみで十分であるため,簡単な炉構造となって いる.ただし,上部構造は工学的な考慮が必要である. その他の取り扱いは全て今までに述べた溶融塩炉の技 術が生かされており,新しく研究開発すべきものはと くに考えられない.

(2) システム化

この加速器溶融塩増殖炉は、例えば図-10 に示すよ うなシステムを構成することによって、溶融塩を仲介 としたトリウム燃料サイクルが理想に近いものとなる。 まだ詳細な検討結果ではないが、加速器や溶融塩の循 環に消費される電力は自給できる見通しであり、さら に余剰電力を生む可能性もある.この場合、何度も強 調してきたように、燃料の再処理が非常に簡単で輸送 するのも液体であるので都合がよい。再加工工程が不 要なのも有利である。燃料処理施設は、バッチ式で十 分であり、一つの加速器溶融塩増殖炉によって、1~2 千万kWeの溶融塩発電炉をカバーできるという試算で ある。このようにすれば、加速器炉と発電炉の合理的 な組み合せが溶融塩を用いて達成され、安全かつ経済 的なシステムとなり得る。

以上が加速器溶融塩増殖システムの概要であるが, まず最初に大出力でかつ信頼性の高い陽子線型加速器 (1 GeV, 10mA)の開発とスポレーション反応の実験 が課題となる.しかし,基本的にはそれほど困難な技 術的問題はないと考える.

5. まとめ

以上で溶融塩技術の基礎および核エネルギーシステ ムへの応用について述べた.また,将来のエネルギー に対しては核分裂,核融合および加速器を組み合せた 「核エネルギー協働システム」ともいうべき概念が最 も重要になり,その際溶融塩技術が鍵を握るであろう. とくに,小型溶融塩炉の構想は既存炉型の大型化を補 いかつ経済性向上に役立つばかりでなく Pu 消滅とTh 導入にも有効であることが期待される.核エネルギー 利用の新たな展開に参考になれば幸いである.

参考文献

 M. W. Rosental, P. N. Haubenreich, R.B. Briggs; The Depelopment status of moltensalt breeder reactors, ORNL-4812(Aug. 1972).

- R. C. Robetson; Conceptual design study of singlefluid molten-salt breeder reactor, ORNL-4541 (June, 1970).
- A.M. Weinberg et al.; a review of molten salt reactor technology, Vol.8 No.2 (1970).
- 4) 溶融塩增殖炉研究専門委員会;溶融塩増殖炉〔改定増補 版〕,日本原子力学会(1981).;古川和男;原子力工業, 7月,8月号(1986).
- 5) H.G. MacPherson; The molten salt reactor Adventure, Nucl. sci and eng., Vol.90, No.4, August 1985.
- 6)古川和男他;密閉式小型溶融塩発電炉の予備考案(その1) 日本原子力学会年会(1984).
- 7)古川和男他;(その2)初期臨界2次元計算、日本原子力学 会(1985).
- 8)三田地紘史他;(その3)工学的予備検討,日本原子力学会 (1985).
- 9) 南多善他; (その4)燃焼計算,日本原子力学会(1985).
- 10) J. D. Lawson; Proc. Phys. soc.(London) B70,6 (1957).
- 吉川九二; JT-60の完成と初期実験,プラズマ核融合学 会第2回秋季講演会予稿集(1985).
- 12) R. Little; TFTR operating status and plants, symp on fusion tech. 13th, Ispra, Vol.1 (1984).
- P. H. Rebuts et al.; Int. atomic energy agency
 10th Int. conf. on plasma physics and controlled nucl. fusion research, (London, UK), Sep. (1984).
- 14) M. A. Abdou; Fusion tech. 39 (1982) Vol.1.
- D. L. Smith et al.; Fusion Blanket/Shield Design Study, ANL/FPP-79-1, Argonne National Lab.
- 16)大阪大学レーザー核融合センター;慣性閉じ込め核融合 炉設計検討報告書(第1次概念設計案),昭和54年3月.
- 17) 古川和男他;慣性用閉じ込めハイブリッド溶融塩システム,日本原子力学会年会(1982).
- 塚田甲子男;加速器による核燃料増殖,日本原子力学会 誌, Vol. 20, No. 8 (1978).
- 19)高橋博;加速器による核燃料増殖の研究の現状,日本原
 子力学会誌, Vol. 23, No.7 (1981).
- 小寺正俊;加速器による核燃料生産および放射性廃棄物: 処理の可能性,日本原子力学会誌,Vol.26,No.6 (1984)
- 21) 中性子ターゲット研究専門委員会;スポレーション中性子工学,日本原子力学会(1984).
- 22) 上野 勲;パルスパワー技術の開発とその将来(第2部) 加速器増殖炉,本誌第5巻,第2号(1984).
- 23)古川和男;長期核燃料サイクル戦略の視点と構想,エネ ルギーフォーラム,1984年11号.
- 24)古川和男他;加速器溶融塩増殖炉の炉化学的考察,日本化 学会誌, No.6 (1982);原子核研究,29 (1985) 105.
- 25) K. Furukawa;第7回Miami 代替エネルギー源国際会 議(Miami, 1985年12月).