展望・解説

高温岩体地熱エネルギーの技術開発

Research and Development on Hot Dry Rock Geothermal Energy

1

林

秀 Hideo Kobayashi

1. はじめに

高温岩体とは、地熱エネルギーの一つであり、文字 どおり地下にねむる高温の岩盤である. 高温であるに もかかわらず, 天然の割れ目が少なく, 天然の熱水や 蒸気を蓄える地熱貯留層が発達していない、このため、 高温岩体内部にまで坑井を掘削しても熱水や蒸気が噴 出するようなことはない.

天然の貯留層が発達していない高温岩体を開発利用 するためには, 天然貯留層の代わりに, 熱い高温岩体 中に人工の地熱貯留層を造ればよいことになる、この アイディアは約20年程前に米国で提案され、それ以来 各国で高温岩体の技術開発が進められている.

わが国でも、新エネルギー・産業技術総合開発機構 (NEDO)により、肘折高温岩体プロジェクトが推進 されており、昭和63年の循環試験により高温の熱水お よび蒸気の回収が試みられた,高温岩体開発の方法, 技術開発の経緯および現状等について海外の技術開発 状況も併せて概説してみる.

2. 高温岩体開発システムの概要

高温岩体中に巨大な湯沸器(地表から地下に水を注 入し, 高温岩体中で加熱して地表に回収する)を造る 手順は、基本的に図-1の様に示すことが出来る. すなわち.

①高温岩体に達する坑井を掘削する.

②その底付近に水圧で割れ目(人工貯留層となる) を造る.

③次に割れ目の位置を計測し、これに向けて第2の 坑井を掘削する.

④2つの坑井がつながったら片方の坑井から水を注

*新エネルギー・産業技術総合開発機構 地熱技術開発室 主任研究員

〒170 東京都豊島区東池袋3-1-1サンシャイン60

男*

図-1 高温岩体開発システム概念図

入し,人工貯留層内で加熱し,蒸気や熱水として 別の坑井から生産する.

⑤地上で利用したあと、再び第1の坑井から地下に 注入する.

高温岩体資源として技術開発対象とされているのは, 花こう岩系の岩体である、それらは、地下に塊として 賦存し,比較的天然の割れ目が少ないため、循環シス テムをその中に造った場合に,循環流体の逃げが少な いと考えられたからである.

水圧破砕による割れ目は, 高温岩体内に天然の割れ 目が少ない場合には、非常に厚みが薄くサイズの大き なものができると言われてきた.しかし,比較的天然 の割れ目が少なく、有望な高温岩体資源とされてきた 花こう岩にも、天然の割れ目がかなり発達しているこ とが分かってきており,各種の方法で推定された人工 貯留層の形態は, 天然の割れ目を押し開く様にして網 目状の割れ目から成っていると考えられるようになっ てきている.

坑井の深さは、どれぐらい必要であろうか.これは、 地上で利用したい熱水や温度によっても異なるし、ま た坑井を掘削する地域の地温勾配によっても異なる. 地表近くの知地温勾配を計測すると100mにつき1~ 8度程度の範囲に分布し、深さ100mあたり3℃程度 が平均であるが、温泉が数多く分布している火山の周 辺地域では、もっと高い地温勾配を示す.わが国の地 熱地帯の例をとれば、地熱発電を目的とするような場 合は、深さ1,500m~2,000m程度以上の坑井が必要に になるし、100℃以下の熱水を回収しようとする場合 には数百m程度でもよいことになる.

高温岩体開発システムは、同図のように、地上およ び地下における流体の流れが閉回路を成しているため、 循環流体の放出や拡散が少なく、環境に与える影響が 殆ど無い全く、クリーンなエネルギー採取が可能とい う特色を有している。

人工の割れ目を造る水圧破砕技術,割れ目の計測技 術および2坑井のつながりを良くする導通技術等は, 高温岩体開発の要素技術の中でも最も独特な技街であ る.これらの技術開発の成果は,従来型の地熱開発に 於て,坑井の蒸気や熱水の生産量が低い場合に,人工 の割れ目を造成して天熱の熱水系との接合を図り,生 産量の改善に展開・応用できるものである.

上記の様な高温岩体技術開発は、わが国を含め世界 の6カ国で進められている.日本および米国は、発電 を目的として行われており、英国、西独、フランス等 のヨーロッパ諸国は、平均の地温勾配がそれほど高く ないこともあり、今のところ比較的低温の熱水回収を 目的としている.国内的には、NEDOが実施してい る肘折プロジェクトのほか、東北大学および電力中央 研究所が独自の研究を進めている.

わが国における高温岩体研究開発は,通商産業省の サンシャイン計画の一環として,昭和53年度より岐阜 県焼岳北西部山麓で基礎的な技術開発が始められた. ここでは昭和58年度までに,深さ300m,温度60℃の 堆積岩を対象に複数の坑井間を水圧破砕の割れ目でつ なぎ,循環試験を実施するとともに,浅部で低温の岩 盤に対する検層機器開発,水圧破砕技術およびフラク チャマッピング技術についての成果を得た.

次の段階として、より高温高圧条件での高温岩体開 発技術の確立、およびわが国の地質構造に合致した技 術開発を目指し、昭和60年度より山形県肘折に現場を

Location of AE Observation Stations

ST-9, ST-10 are arranged in 1988 Other Stations are arranged before 1988

ステーション配置 ______ || _____

図-2 肘折実験場の坑井及びAE観測

図-3 SKG-2 坑井周辺の地質及び ケーシングプログラム

移し,要素技術開発研究が進められている. 肘折プロ ジェクトには,NEDOが日本側の実施主体として協 定に参加し,米国ロスアラモス研究所において昭和55 年から61年まで行われたIEA共同研究(米国,西独, 日本)の成果も取り込まれている.

肘折は山形県新庄市の南西に位置し, 肘折盆地は比 較的新しい火山活動で形成されたもので, 直径は約34 km, 盆地の標高は約400mである(図-2参照). こ の地域は, これまで国および企業の手で地熱探査が実 施され, 盆地内には2本の地熱調査井, SKG-1, SKG-2が掘削された. 調査坑井坑底部の岩盤温度は 高かったものの, 生憎, 蒸気や熱水が自噴しなかった ため, 高温岩体技術開発の適地として選定された.

肘折盆地の南縁に本プロジェクトの実験対象となっ たSKG-2坑井が位置している.坑井は深さ1800m, 坑底付近の温度250℃で,坑井周辺の地質構造は, 1460m以深が花こう閃緑岩となっている.図-3に SKG-2坑井周辺の地質およびケーシングプログラム を示す.この坑井は,元々1300m以下が裸坑となって いたが,坑底部において水圧破砕を行うため,昭和60 年に7吋の鋼管(ケーショグパイプ)を坑底部の14m を残して図の様に設置した.

昭和61年10月,同坑井を用いて高温の岩体中に割れ 目を造る水圧破砕実験を行った.実験には、6台の高 圧ポンプを用い,SKG-2坑井から,注入流量、2, 4,6m³/minで合計約1080m³の水を注入した.最大 の坑口注入圧力は約160kg/cm²である.注入終了後, 坑口を開放すると,地下に注入された水は地表に噴出 した.戻り水の温度は、時間の経過とともに上昇し, 最高105℃を示し,積算の戻り水量は約370m³に達し た.これは,注入量の約35%に相当する.試験的では あるが,地上から注入した水が地下の高温岩体で加熱 され,わが国では初めて100℃以上の熱水として人工 的に回収された.

水圧破砕実験に際して、図-2に示した観測システ ムにより、水圧破砕で発生する岩盤の微小な音(AE) の観測を行い、その震源分布から形成されたフラクチャ の位置や形状の推定を試みた.2つの計測システム、 すなわち、水圧破砕坑井の周囲を半径2~3kmの距 離で取り囲む地上多点観測網(昭和61年時点では、 ST-1~ST-6の6観測点が設置されていた)と、水 圧破砕坑井から650m離れた別の坑井、SKG-1内に、 設置した3軸ジオフォンを用いた.図-4は地表観測 網によるAE発生位置を示し、震源は水圧破砕坑井の 南側上方に集中している.3軸ジオフォンによる結果 も、ほぼ同様な傾向が見られたが、坑井の北側下方に もわずかにAE震源の広がりが観測された.

また,SKG-2 坑井坑底部の坑壁をボアホールテレ ビュアー観察したところ,坑井を横切るフラクチャ (走行はN159度,傾斜60度)と,坑井軸に沿ってほぼ 東西に伸びているフラクチャが存在することが確認さ

図-4 水圧破砕実験(昭和61年)におけるAEの 震源分布図(地表多点観測網による)

図-5 SKG-2及びHDR-1 坑井の坑跡(平面図)

れ,水圧破砕前後の坑井内流量検層の比較により,後 者の縦亀裂は水圧破砕により形成されたことがわかっ た.

人工的に造成したフラクチャの位置を確認するため, 昭和62年に新たなHDR-1 坑井を, SKG-2 坑井の南 側に掘削した.2つの坑井の坑底部付近の距離が約30 mとなるように坑井のターゲットを決め,方向・傾斜 を制御しながら掘削した. HDR-1 坑井は, ほぼ計画 どうりターゲットの円内に掘削され, 2 坑井の坑底部 の距離は35mであった. 図-5 は SKG-2 および HDR-1 坑井の坑跡を平面上に投影したもので, HDR-1 坑 井の掘削ターゲットは円で示した. HDR-1 坑井は, 深度1500m~坑底までの300mが裸坑となっている.

この HDR-1 坑井が水圧破砕で形成されたフラク チャを貫通しているかどうかを確かめるため,SKG-2 坑井から水を注入する短時間の導通確認試験を実施 したところHDR-1 坑井の水位上昇が認められた. HDR-1 坑井の温度検層を行ったところ,深度1743m と1786mに温度異常が示され,この2点で岩盤から流 体が流入していることが確かめられた.

坑井の温度検層, 坑井壁面の割れ目状況を観察する ボアホールテレビュア観察, および2坑井間の導通確 認試験等により, 弱いながらも2坑井の導通およびフ ラクチャと坑井の交差位置が確認された.

昭和63年7月には、2坑井間の導通促進を図るため、 形成されているフラクチャに対し、SKG-2坑井から 2,000m³を注水する加圧試験を実施した.流量は2~ $6 m^3/minである.2000m^3注水終了時にも顕著な湧$ 出の増加は見られなかったが、注水終了後、SKG-2の坑口を開放しベントを開始したにもかかわらず、HDR-1からの湧出は継続して微増した.湧出温度が100℃弱に達した時点で、熱水及び蒸気が脈動して噴出し始め、その直後、湧出が活発になり、最大流量は100m³/hを越え、温度は170℃を上回った.この大量噴出は約30分間継続した.その後、断続的な噴出を繰り返し、ほぼ2日間にわたり HDR-1 からの噴出が

続いた.但し,SKG-2からの戻りは,坑口開放後約 1日で停止した.噴出が断続的であり,注水が停止し た後もHDR-1の湧出が続いた事など,予測とは異 なった噴出状況を示した.

加圧試験において地表観測網により観測されたAE は100個を越え、このうち4観測点以上でほぼ同時観 測され、震源決定された信号は約70個である.得られ たAEの震源分布を図-6に示す.AEの震央は、SKG-2よりやや南側で東西に伸びたように分布し、その長 さはおよそ400mである.これに対し、深さ方向に関 しては、大半のAEは深度1,600~1,800mで加圧区間 より浅い位置に震源が決まっている.震源集中域をフ ラクチャと仮定すれば、フラクチャは東北東一西南西 方向であり、その広がりは、水平方向約400m、深さ 方向約200m、幅約100mのほぼ縦型である.

昭和63年度における地表多点用観測システムでの震 顔決定精度の誤差は、水平方向では約50m、深度方向 では約100m程度とされ、深さ方向の決定精度は良い とは言えない.しかし、8観測点以上で観測されたP

図-8 循環試験における生産井(HDR-1) 坑口の 圧力,温度,流量経時変化

図-9 循環試験における蒸気及び熱水の生産状況

波初動のデータを用いて震源決定した場合でも,ほぼ 同様の結果を得ている.

2 坑井間の導通改善が確認できたので,貯留層評価 を目的に,16日間の循環試験を実施した.循環試験の 概念図を図-7 に示す.

SKG-2 抗井からの注入流量は、循環開始から約10 間は0.5m³/min,それ以降は1.0m³/minであり、 坑口圧力はそれぞれ約30及び60kg/cm³程度であっ た.図-8は、循環試験期間中の生産井坑口での温度, 圧力および流量の経時変化を示し、生産流出が間欠的 であり、循環期間ともに1サイクルの時間が短縮する 傾向が見られた.生産水温度は、循環試験期間中殆ど 低下せず、このため貯留層モデルを仮定しての、有効 熱交換面積および長期抽熱予測等の抽熱特性について 評価することは実現していない.

循環試験においては、合計13,430m³が注入され、 推定蒸気量を含めて注入量の約35%が生産井から回収 された.なお、注水停止後も生産が続いたので、その 期間回収量をプラスすると、注入水の約44%が地表に 戻ったことになる.図-9は、循環試験における蒸気 の噴出状況を示す.

循環試験中の間欠噴出の原因を探るため、生産の1 サイクル中の生産井内の流動がどの様に変化するかを シミュレーションした.用いたプログラムコードは、 WELBOREで,深度1,490m (PTS検層を行った深

図-10 生産井の深度1490mにおける温度, 圧力 及び流量の変化

度)から坑口の間で常に質量保存則,運動量保存則お よびエネルギー保存則が成立するものとして差分法に より解析した.

その結果,①深度1,490mでの流量は,サイクルの 中期にわずかなピークが見られるものの,坑口におけ る流量変化に比較してきわめて安定している,②坑井 内フラッシングレベルは,噴出に伴い次第に低下し, サイクルの中期には最大深度1,100m程度に達するこ と等が推定された.これは,貯留層内ではなく坑井内 フラッシングにより間欠噴出が生じたことを示してい る.

循環試験における間欠自噴はかなり規則正しいので、 この周期を基準にして測定時期の異なる生産井坑口の データを標準化すると、各サイクルの噴出の初期に急 激な噴出流量の増加が見られ、その後暫減してサイク ルの終期には噴出の停止期間がある.これに対し、生 産井 HDR-1の深度1,490mでの温度、圧力及で流量 の測定結果は図-10のようになる.温度はほぼ145℃で 一定であり、このことは、前述の坑井内流動シミュレー ションの結果と同様、フラッシングがこの深度以深で は生じていないことを示している.圧力はサイクルの 中期において最も低くなっており、フラッシングポイ ントはこの時期に最も深くなっていることを示してい る.

循環試験中における PTS 検層により,深度1,530m, 1,625m, 1,742m, 1,762m, 1,788m, 1,800mに温度 アノマリが認められ,これら6カ所は岩盤から HDR-1 坑井への流入箇所と考えられる.坑井内の流量分布 から,全生産流量の内, 1,530m層で15%,それ以深 から1,788m層までの区間で30%, 1,788m~1,800m

	名	フィールド位置	岩 質	坑 井				
国				本数	深 度 (垂直)	坑底温度	実験期間	循環試験等
*	Ħ	フェントンヒル(ニュー	花崗閃緑岩	2	2,928m	205°C	'72~'80年	288日間の連続抽熱
		メキシコ) (第1期)			-3,064m			(熱田力 2 ~ 3 MWt)
		同上	同上	2	4,400m	327°C	'79年~	4週間の抽熱循環
		(第2期)			4,000m			(熱出力最大9MWt)
英	国	コーンウォール	花崗岩	4	300m	15°C	'76~'80年	
		(第1期)				(推定)		
		同上	同上	2	2,000m級	80°C	'80年~	長期循環試験実施
		(第2期)		1	2,650m	105°C	'84年~	長期循環試験実施中
西	独	ウラハ	花崗岩	1	3,334m	140°C	'77~'80年	二重管システムで循環テ
								ストを終了
		ファルケンベルグ	花崗岩	6	300m級	14°C	'79~'81年	循環試験を実施
フラ	ンス	ル・メイエ・デ・ モンターニュ	花崗岩	4	250m級 700m級		'81~'82年 '84年~	3坑井間で循環試験実施
EC,西 井闾	独,仏	ソルツ	花崗岩	1	2,000m級	140°C	'86年~	地下岩盤評価試験
スウェ	ーデン	フジャルバカ	花崗岩	2	500m級	17°C	'84年~	導通循環試験実施
Ħ	本	焼岳	砂 岩 粘板岩	7	300m級	60°C	'78~'83年	循環系作成
		肘折	花崗閃緑岩	2	1,800m級	253°C	'84年~	短期循環試験実施
		東八幡平	凝灰岩	2	400m級	60°C	'83年~	循環系作成
		秋の宮	凝灰岩	1	400m級	60°C	'87年~	多重フラクチャ造成

表1 各国の高温岩体研究開発プロジェクト一覧

で55%が流入していると見積られた.

肘折プロジェクトは、高温岩体発電システムの要素 技術開発を、実規模に近い温度、深度条件で進めてお り、今後、より深部に大規模の人工貯留層を造成し、 将来的に長期の循環抽熱試験が計画されている.これ らを通して、人工貯留層からの熱採取量(出力、寿命)、 貯留層内の流動抵抗軽減、水回収量増大、経済性評価 等に関する検討が必要である.

4. 海外における高温岩体技術開発研究の現状

米国ロスアラモス研究所は、昭和53年フェントンヒ ル実験場において、坑底温度185℃、深度3,000m級の 坑井を用いた人工の循環系による史上初の熱抽出に成 功した.昭和55年には完成した循環系により約10ケ月 にわたり、出力3,000~5000Kwtの熱出力循環認試が 実施された.その成果を踏まえて、深度4,500m、温 度320℃の、高温岩体から2~5万Kwtエネルギーを 採取するシステムを造成し、長期にわたる循環試験に よりその実用性を実証することを目的として第2期計 画が実施されている.昭和58年12月の大規模水圧破砕 実験により人工貯留層を造成し、60年5月には30日間 にわたり約1万Kwtの抽熱実験が行われた.本プロジェ クトは、深度、温度とも世界で最も過酷な条件での高 温岩体開発を目指したもので、水圧破砕の実施、2坑 井の導通およびフラクチャの評定などに幾多の困難に 見舞われたが,それらを克服するとともに,高温用検 層機器およびAE観測用3軸ジオフォン等,高温岩体 開発に必要な成果を得ている.現在,高温岩体開発の 経済性評価を目的とした約1年間の長期循環抽熱実験 の準備を進めている.

ヨーロッパ各国の高温岩体の温度条件は、それほど 恵まれているとは言えない。

例えば英国ケンボーン鉱山大学によるコーンウォー ルプロジェクトでは、坑井深度2,650mに対し坑底温 度105℃と、米国や日本の半分以下の地温勾配でる。 また、対象となっている花こう岩は天然き裂がかなり 発達しており、閉ループの循環系を造成するには、循 環系からの逸水が予測され、困難な条件にあると考え られる、それにもかかわらず、英国は1987年以来長期 の循環試験を継続するとともに、爆薬による循環系の 流体抵抗の軽減、粘性流体による水圧破砕、フラクチャ マッピング精度の向上、天然き裂の発達した岩盤内の フラクチャ挙動予測計算等、個々の要素技術の研究開 発を精力的に推進している、ヨーロッパにおいては、 暖房. 給湯システムが発達している都市構造もあって. 高温岩体からの採取熱の直接利用を意図して技術開発 が行われていると思われるが、すでに英国では、これ までの成果に基づき, 坑底温度約200℃, 深度6,000~ 8.000m規模の坑井による発電を目的として循環シス テム造成の計画に着手している.

西独およびフランスは、低温,浅部の花こう岩に対 して,独自の高温岩体プロジェクトを推進してきたが、 現在,西独,フランスおよび EC の共同で、フランス のアルザス地方、ソルツにおいて、2000m級坑井によ る高温岩体開発の共同研究を行っている.ソルツ一帯 は、ヨーロッパにあっては比較的高温の花こう岩の賦 存が確認されており、発電の可能性が検討されること になっている.

そのほか,スウェーデンでは花こう岩中に循環シス テムを形成し,得られる低温の熱からヒートポンプに より地域暖房に十分な温水を得ようとする試みが成さ れている.地熱発電発祥の国イタリアでは,開発に際 しての空井戸を有効に活用するため,これらの坑井を 用いて高温岩体システムへの展開を検討している.以 上を含め,表1に各国のプロジェクトでこれまで形成 された人工の循環系の概要およびそれらによる循環試 験の結果を示す.

5. おわりに

高温岩体は、通常の地熱エネルギーと比較し、人工 貯留層を地下に形成することによって開発・利用が可 能になる.それだけに手間がかかるが、高温岩体技術 開発によって従来開発が困難であった地域での地熱開 発が期待できるし、個々の要素技術は従来地熱開発へ の波及効果も少なくない.商業的利用に到るにはもう 少し時間がかかろうが、すでに高温岩体から人工的に 熱エネルギーを採取する循環抽熱実験を行うところま できている.高温岩体資源の温度,深度,地下岩盤条 件など、各国のおかれた立場は異なっても、共通の技 術課題は多く、昨年、わが国において高温岩体技術開 発についての初めての国際ワークショップが開催され、 引き続き本年6月には、英国での国際会議が予定され ている.高温岩体に係わる関係者の協力により高温岩 体開発・利用の早期実現を期待したい.

