特 集

54

核燃料サイクル技術の開発動向と将来

ウラン濃縮技術一レーザー法-

Laser Isotope Separation of Uranium

岡田芳樹^{*}•武内一夫^{**} Yoshiki Okada Kazuo Takeuchi

1.はじめに

レーザーによるウラン濃縮の研究は、1974年にアメ リカのローレンス・リバモア国立研究所(LLNL) で濃縮実験に成功して以来、アメリカ、フランス、イ ギリス、ドイツ、日本などの諸国において活発に研究 され始めた.このレーザー法は、濃縮分離したいウラ ンの同位体U-235の原子あるいはU-235を含む分子だ けに光を吸収させ、選択的に励起および反応させて分 離する方法である.レーザー法は他の方法と比較して 分離係数が大きい、すなわち1段の過程で高い濃縮度 が得られるという特徴を持つ.1980年代に入って、レー ザーの出力、効率、経済性、信頼性などの画期的な向 上により、ガス拡散法、遠心法に置き代わり得る核燃 料用ウラン濃縮技術として、レーザー法が期待される ようになった.

レーザーを用いて, ウラン濃縮に代表される同位体 分離を実際に行うための条件としては,

(i) 同位体による光吸収波長の差異, すなわち同 位体シフトを利用して, 目的の同位体を選択的に励 起できること,

(ii)励起された同位体原子、あるいは同位体を含む分子を、選択性を保ったまま光解離できること、
(iii)選択性を保持したまま解離した目的の同位体

を分離回収できることなどが挙げられる.

レーザーウラン濃縮技術には,金属ウランから発生 するウラン蒸気を利用する原子法(AVLIS)と,六 フッ化ウランUF。ガスを利用する分子法(MLIS)と がある.以下に,原子法,分子法それぞれのプロセス 原理と技術開発の現状について紹介し,レーザー法の 将来性を考える.

*	理化学	研究所	分離工学研究室	医研究員
*	*	"	"	主任研究員
Ŧ	351-01	埼玉県	和光市広沢 2 -	- 1

原子法レーザーウラン濃縮(AVLIS)の 原理と技術の現状

AVLIS装置の概念図を図-1に示す.AVLISでは, ウラン原子蒸気を電子ビーム加熱により発生させ,銅 蒸気レーザー(CVL)励起の色素レーザーを用いて, U-235を選択的にイオン化する.その後,回収用電極 板を用いてこのイオンを金属蒸気流の中から引き出し, 回収する.米国ではLLNLを中心に,実用化に向けた 研究開発が進められている.わが国においても,日本 原子力研究所,大阪大学等で基礎研究が以前から行わ れており,1987年にはレーザー濃縮技術研究組合が設 立され,年間1トンSWU規模の実験機レベルの機器 開発が進められている.

図-1 原子法レーザーウラン濃縮概念図

2.1 ウラン蒸気発生

レーザー光照射部へウラン蒸気を供給するために, 冷却されたるつぼ内にあるウラン金属を電子銃で加熱 し, ウラン原子の蒸気を発生させる.電子ビームを磁 界により偏向することにより,電子銃をウラン蒸気か ら保護している.

ウランの蒸気圧は2000℃で0.01Torr程度であるの で,充分な蒸気圧を得るためには,2500℃以上の高温 が必要となる.高温の溶融ウランは化学反応性が高い

Vol. 13 No. 1 (1992)

ため,るつぼ材料の腐食が大きな問題となる.そこで, 電子銃でウラン金属を部分溶融させ,熱伝導度の高い 銅などでできたるつぼを冷却しながら,るつぼの表面 温度を下げる方法がとられている.

したがって、るつぼにおいて、熱伝導などによる熱 損失が存在する.この熱損失を低減するため、るつぼ 材質や形状などの工夫が必要であり、るつぼ内溶融ウ ランの熱流動解析をもとに、蒸発部における熱効率の 最適化が研究されている¹⁾.

2.2 原子法用レーザーと選択励起・電離

ゥラン原子は92個の電子を持ち,基底状態では最外 殻の電子配位が5f³6d¹7s²の複雑な構造を持った原子 である.このため、イオン化に到るまでには数多くの エネルギー準位への励起が可能である.2波長2段階, 3波長3段階などのイオン化方式もあるが.準安定状 態のウラン原子をもイオン化する4波長3段階方式が 一般的である²⁾.U-235とU-238原子との同位体シフ トは、波数にして0.15~0.3cm⁻¹(周波数で5~10GHz) 程度である.また、U-235はU-238とは違い、核スピ ンを持つため(I=7/2)、核運動量Jとの相互作用に より超微細構造と呼ばれる複雑に分裂したスペクトル 構造を持つ^{3,4)}.**図-2**にU-235の超微細構造を示すデー タの1例を示す⁵⁾.U-235スペクトルは5~10GHz程 度の周波数幅を持つ.

図-2²³⁵Uの超微細構造と同位体シフト

また,高温に加熱されたウラン原子では,かなりの 割合の原子が熱的に準安定状態に励起される:たとえ ば,3000K程度では基底状態から620cm⁻¹上の準安定 状態には約30%のウラン原子が存在する.蒸発したウ ラン原子のイオン化率を高めるためには,この準安定 状態原子をも励起させる4波長3段階法(図-3)が必 要である.この4波長3段階法では,まず選択励起光 を用いて選択的にウラン同位体を,15000cm⁻¹程度の 準位に励起する.ついで,中間励起光を用いてイオン 化するための中間段階として30000cm⁻¹付近の準位に

図-3 4波長3段階励起法

励起する.最後に,中間励起されたウラン同位体を, 電離光によりイオン化する.一般に,励起の際の吸収 断面積に比べて,電離の断面積は著しく小さい.そこ で,レーザー光利用効率の低下を避けるため,電離効 率の高い,自動電離状態へ励起し電離する方法⁵⁾や, 高リドベルグ状態へ励起し電界により電離する方法な ど,電離断面積の大きな電離過程が利用される.

このような励起を行うレーザーとしては,可視域で 波長が連続的に選択できる色素レーザーとそれを励起 する銅蒸気レーザーが用いられる.

銅蒸気レーザー(CVL)は、銅の蒸気をレーザー 媒質とし、510nmと578nmで発振する高繰り返し可 能な放電型パルスレーザーである.銅蒸気レーザーの 構造を図-4に示す.レーザー管内は1500℃に加熱され、 蒸発した銅原子を、レーザー管の両端の電極間のパル ス放電により、励起・発振させる.放電部の長尺化と 大口径化により高出力が図られ、現在単機出力として、 200Wを超える出力が得られている⁶⁾しかし、単機の 出力には限界があるので、現状では、数百W以上の出 力の達成には、発振器と複数の増幅器を直列に接続し た多段増幅システムが有効である.この多段増幅によ り、多数台のレーザーの発振タイミングを正確に同期

図-4 銅蒸気レーザーの構造

- 55 -

させながら,現在400W以上の出力が得られている⁶⁾. CVLの電気/光変換効率はおよそ1%前後である. レーザー管両端からの熱放射損失を抑え,レーザー管 内の高温度領域を広げるなどの工夫により,銅蒸気の 利用効率を高めることで,レーザー効率の向上と出力 増加が図られている.また,CVL電源のスイッチン グ素子であるサイラトロンにおいて,過飽和インダク タンスを用いた磁気アシスト法を採用することにより, サイラトロンの長寿命化が可能になり,CVLの長時 間連続運転が可能になった.

色素レーザーのスペクトルは、U-235を選択的に励 起・電離できるほど単色性にすぐれている一方で、U-235の超微細構造に合致した波長スペクトルを有しな ければならない.そのためのスペクトル制御法の最適 化が進められている¹⁾.また、色素レーザーの大出力 化に関しては、色素レーザー発振器出力を横励起増幅 器により多段増幅する方式がとられる.色素レーザー の光変換効率は40%前後と考えられる.

2.3 イオン回収

ウランの回収には、光電離されたU⁺を電界により 横方向に引き出し、濃縮ウランを回収電極板に回収す る.電離されなかったウラン蒸気は上方に位置する劣 化ウラン回収板に回収される.このとき、回収板を金 属ウランの融点(1405K)以上に加熱し、付着したウ ランを液体の状態で回収する.したがって、回収板材 料として1405K以上の高温での、電気特性、耐熱性、 耐溶融ウラン性の観点から、回収板材料の選定、開発 が重要である.

また,このイオン回収部において,U-238の電子衝 突による解離,および選択電離されたU-235イオンと 中性U-238原子間との電荷交換が起こる.特に電荷交 換の断面積は大きく,条件によっては濃縮度の低下を 招く. この電荷交換反応の進行は, イオンが中性原子 流を横切る時間や原子密度に依存する. 電荷交換の影 響を避けるためには, 電極電位, 電極間隔, ウラン蒸 気密度などを注意深く設定する必要がある. プラント の処理能力を大きくするためには, ウラン蒸気密度は 高いほどよいが, 電荷交換などにより性能が低下する ので, 10¹³個/cm³程度が上限であると考えられてい る.

3.分子法レーザーウラン濃縮(MLIS)の原理 と技術の現状

MLIS装置の概念図を図-5に示す.ガス拡散法、遠 心分離法などの既存のウラン濃縮法で用いられている UF。ガスに、16μmラマンレーザー光を照射する.こ れにより、²⁵⁵UF。を選択的に励起し、解離反応を誘起 して、固体生成物であるUF。中にウラン-235を濃縮す る.なお、16μmラマンレーザーはパルスCO²レーザー を励起光源とする.生成したUF。粉末は減圧インパク ターなどの粉体捕集装置で回収する.

ドイツでは、ウラニット社が中心になって2000年を 一つの目標に分子法の実用化を目指した開発が行われ ている.わが国では、理化学研究所において分子法の 高度化・高効率化を、動力炉核燃料開発事業団におい てその大型化・システム化を目指した研究開発が行わ れている.

3.1 UF。断熱膨張冷却

室温におけるUF。赤外吸収スペクトルの主要な吸 収バンドを表1に示す.このうちレ。バンドと呼ばれ る16μm付近の吸収帯は同位体シフトが約0.6cm⁻¹程 度と大きく,また赤外吸収断面積も大きい.このレ。 バンドを用いてレーザー光により励起し,解離させる ことが最も有利である.ところが,図-6に示すように⁷⁾,

Vol. 13 No. 1 (1992)

帰属	波数 (波長) (cm ⁻¹) (μm)	相 対 的 な 吸 収 断 面 積
$\nu_1 + \nu_8$	1291(7.7)	2.0x10 ⁻³
$\nu_{2} + \nu_{3}$	1157(8.6)	2.3×10^{-3}
$\nu_3 + \nu_4$	827(12)	9.5x10 ⁻⁴
ν 3	625(16)	TOT JATA UT
ν ₄	186(54)	5 x10 ⁻²

表1 UF₆の主な赤外吸収バンド

図-6 300KにおけるUF。赤外吸収スペクトル

図-7 50KにおけるUF。赤外吸収スペクトル

室温付近ではUF。スペクトルのバンド幅が同位体シ フトに比べてはるかに広いので、室温状態では、選択 的に²³⁵UF。を光励起することは困難である.²³⁵UF。を 選択的に励起するためには、UF。ガス温度を下げるこ とが必要である.図-7に50KにおけるUF。の赤外吸収 スペクトルを示す⁸⁾.冷却することにより、熱的に励 起して高い準位に分布していたUF。分子が基底状態 に戻るため、スペクトルのバンド幅が同位体シフトよ り狭まる.²³⁵UF。の吸収波長にレーザーの波長を同調 させることで、効率のよい選択励起が可能となる。

UF₆のガス温度を下げる手段として、単に冷却した のでは、100Kで10⁶Torr程度の蒸気圧しかないこと から、実用的なUF₆ガス圧力を得ることはできない. そこで、流体力学の分野で超音速風洞として利用され ている超音速ラバルノズルを用いる.超音速ノズルか

図-8 超音速ラバルノズルの模式図(側面)

らUF。ガスを噴出させ、断熱膨張によって過冷却状態 にする.この方法を用いれば、UF。をガスのまま密度 を高く維持することができる.UF。は原子数の多い分 子であるから比熱比γ(定容比熱と定圧比熱の比)は 1に近く、UF。単独では断熱膨張による冷却が困難で ある.そこで単原子分子である希ガスなどを混合し、 γを増大させることによって効率よく冷却する.

分子法では、レーザー照射部におけるUF。ガス密度 として10¹⁵個/cm³程度かそれ以上で実用的な濃縮が 行える. 超音速ラバルノズルは、一般に図-8に示すよ うな形状をしており、スロート部で気体速度は音速 (マッハ数M=1)、それより下流では超音速(M>1) となる. 下流になるとUF。が凝縮を開始したり、衝撃 波が発生するので、この領域より上流で照射する. 温 度T₀, 圧力P₀の混合ガスを圧力Pまで断熱膨張させ ると、温度Tは次式のようになる.

$$T = T_{0} (P / P_{0}) \qquad (1 - \gamma) / \gamma \qquad (1)$$

3.2 分子法用レーザーと選択励起・解離

²⁵⁵UF。を選択的に励起し解離させる励起方法として、 2 つの方式がある.1 つは、赤外レーザーで選択励起 された²⁵⁵UF。を紫外レーザーで解離させる方式(IR +UV法)である.他方は、赤外レーザーのみで励起 と解離を行う赤外多光子解離(IRMPD)を用いる方 法である.IR+UV法では、UV光による非選択的な ²⁵⁸UF。の解離を避けられないため、選択性の低下が起 こる.一方、このような低下の起こらないIRMPD法 は実用化の目的からは有望な方式であると考えられる. 理化学研究所では、超音速ノズル型反応装置を用い、 連続波長可変16 μ m光と高エネルギー16 μ m光を組み 合わせた多波長IRMPD方式を開発し、一段で3%以 上の濃縮が可能なことを実証した⁹⁰.

この赤外多光子解離を行うレーザーとしては、パラ 水素ラマンレーザーとそれを励起するCO₂レーザーが 用いられる.

パラ水素ラマンレーザーは、パラ水素の回転散乱に よるラマンシフトを利用し、9μm~10μmの波長を 持つCO₂レーザー光を16μm光に波長変換する.この ラマンシフト量は354.37cm⁻¹で、パラ水素の回転励起 準位 J=2と基底準位 J=0とのエネルギー準位差に 対応している.励起CO2レーザー波長を変えることに より、出力ラマンレーザー波長を変えることができる が、励起レーザーとして発振波長が離散的であるTE A(横放電型大気圧)−CO₂レーザーを用いた場合, ラマンレーザー出力は連続同調性を持たない. そこで, ²³⁵UF₆の吸収波長に同調させる選択励起用16μmレー ザー光を得るために、TEMA(横放電型高気圧)-C $O_2 \nu$ ーザーを用いる. TEMA – CO₂ レーザーは、 レー ザー媒質の圧力を10気圧に高め、スペクトルを広げる ことで、出力波長を連続的に変化させることを可能に したものである.

パラ水素ラマンレーザーにおいては,単一パルス入 力に対するラマン変換効率は高く,エネルギー効率で 30%以上,量子効率で80%に達する.

分子法の実用化には,高出力・高繰り返しのCO₂レー ザーシステムを開発する必要がある.レーザー照射部 である超音速ノズル内のガス線速度を考えると,10k Hzオーダーの繰り返しが必要である.そのために,

1~2kHzのCO₂レーザー励起のラマンレーザーを5 ~10系列用い, マルチプレキシングにより10kHzの繰 り返しパルスを作る.現在、パルスあたり数Jの出力 で繰り返し速度1kHz, 平均パワー数kW級のTEA-CO₂レーザーの開発研究が盛んに行われている.この ような高繰り返しTEA-CO2レーザーの開発にとっ て、重要な要素技術としては、レーザーを放電励起す るための高繰り返しパルス電源技術, 放電部のレーザー ガスを安定に供給するためのレーザーガス技術等があ げられる.現在,高繰り返しレーザー用励起電源のス イッチ素子として、動作寿命や信頼性、操作性などの 点において問題のあるサイラトロン管にかわり、信頼 性、操作性に優れた半導体素子をメインスイッチとし て用い, パルストランスと磁気パルス圧縮回路を組み 合わせた全固体素子化電源が開発され、注目されてい る.理化学研究所では、この全固体素子化電源を用い、 長時間動作が可能な1kHz仕様のTEA-CO₂レーザー 発振器の開発に成功した¹⁰⁾、また、短時間動作ではあ るが、繰り返し速度600Hz、平均パワー3kWの発振 にも成功している¹¹⁾. レーザーガス再生技術等の改良 により、長時間の安定動作が可能な1kHz,数kW級

のTEA-CO2レーザーシステムの開発が期待される.

3.3 生成UF₆固体の捕集

UF₆の同位体選択的な赤外多光子解離反応により 生成される濃縮UF₅ 微粒子は、未反応のUF₆ ガスか ら分離されることが必要である. 微粒子の捕集法とし ては、全圧として数Torr以下の圧力で反応が進行す ること、耐フッ素性を有する材料を用いる必要がある こと、連続流反応装置の処理能力を考慮して、できる だけ低圧力損失の形式が望ましい. これらの点を考慮 して、捕集法の選定と開発が行われている. ただし、 どのような捕集法を用いるかについては、UF₆固体の 粒子形状、粒子密度に合わせて最適な方法をとらねば ならない.

理化学研究所では、粒径の小さい超微粒子が低密度 で存在するといった、一般に捕集が難しいとされる条 件下でも捕集できる技術として、減圧インパクターの 研究を行い、効率よくUF₅超微粒子を捕集できる見通 しを得ている.また、この結果に基づいて、大量処理 のためにバーチャルインパクターを設計することがで きるようになった.

長時間UF₅粒子とUF₆ガスが接触すると次の反応 が起こり,濃縮度が低下する恐れがある.

$^{235}\text{UF}_5(s) + ^{238}\text{UF}_6(g) \rightarrow$

 235 UF₆(g) + 238 UF₅(s) (2)

この反応はフッ素を交換する反応であるが、あたかも ウラン同位体が交換された場合と同様の効果を持つの で、UFs粒子を連続的に取り出し、未反応のUFsガス との接触を絶つことが実用規模では必要となるかもし れない。

4.おわりに

レーザー法ウラン濃縮技術は,原子法にせよ分子法 にせよ未だ完成された技術ではない.いくつかの技術 課題が残されている.

原子法では金属ウランを用いることから、核燃料サ イクル内に金属ウランへの変換工程を新たに加える必 要があり、また高温の金属ウランに対して耐食性の高 い材料の開発、溶融金属の連続処理など今後の課題が ある.分子法では、遠心法などの在来法で使用を熟知 したUF。ガスを用いるため、材料開発の課題はほとん どないが、これまで基礎物性データの集積が少ない固 体UF。について、UF。との交換反応や再フッ素化速 度等を含めて知見をさらに増す必要がある. 経済性の観点からエネルギーの利用効率の向上を図る 必要がある.原子法では、ウラン蒸気発生部における 蒸発効率の向上と、レーザーシステムにおけるレーザー 効率のさらなる向上が期待される.分子法では、その 必要分離エネルギーに対するレーザー運転費の占める 割合が高いと予想されることから、レーザー付帯設備 をも含めた総合効率の高い高繰り返しラマンレーザー システムの構築が、経済面で大変重要であると考えら れる.

いずれの方法も,将来のウラン濃縮法として,大き な魅力を持つ方法であるうえ,開発されたレーザーの 利用や,光反応の解明,超微粒子技術の進展など大き な波及効果が期待できるので,拙速は避けて長期的視 点に立った開発努力が望まれている.

参考文献

- 1) 森岡 昇 ほか5名;原子法レーザーウラン濃縮,応用 物理,58巻,2号(1989),249-257.
- 2) Travis, D. N., Wort, D. J. H.; Some Aspects of the U. K. Laser Isotope Separation Programme, Proc. Second Workshop on Separation Phenomena in Liquids and Gases, Vol. 2 (1989), 637-650.
- 3) Bohm, H. D. V., Michaelis, W., Weitkamp, C.;

Hyperfine Structure and Isotope Shift Measurements on ²³⁵U and Laser Separation of Uranium Isotopes by Two-step Photoionization, Opt. Commun., Vol. 26, No. 2 (1978), 177-182.

- Demers, Y., Gagne, J. M., Dreze, C., Pianarosa, P.; Hyperfine Structure Measurements on Some ²⁸U Levels by Laser Fluorescence Spectroscopy, J. Opt. Soc. Am. B, Vol. 3, No.12(1986), 1678-1680.
- Greenland, P. T.; Laser Isotope Separation, Contemporary Physics, Vol.31, No. 6 (1990), 405-424.
- 6) Hamada, H; Current Status of the Development of AVLIS Test Plant, Abstracts of the Int. Sympo. on Isotope Separation and Chemical Exchange Enrichment, Tokyo(1991), 73-74.
- 7) Snavely, B. B.; Separation of Uranium Isotopes by Laser Photochemistry, Proc. Int. Conf. Quantum Electronics, San Francisco, California(1974).
- Jonsen, R. J. et al. ; Prospects for Uranium Enrichment, Laser Focus, (1976), 51.
- 9) Takeuchi, K. et al.; Infrared Multiphoton Dissociation of UF₆ in Supersonic Nozzle Reactor, J. Nucl. Sci. Technol., Vol.26, No. 2 (1989), 301-303.
- 緑川克美 ほか3名;平成3年春季第38回応用物理学関係連合講演会講演予稿集,29a-E-6(1991),896.
- 小林直樹 ほか4名;平成3年秋季第52回応用物理学会 学術講演会講演予稿集,12a-L-7(1991),958.

 ・通仏成工業(構直ウラン環範研究所 所長 〒890 宮崎県口向市仲成町1-1