

スーパーエネルギーテクノロジー

Feasibility of Sub-Light Speed Rocket

1. はじめに

将来, 亜光速ロケットは実現するであろうか?SF の世界ではすでに光速に近い速さで航行するロケット は描かれているようだが, 現実にはどうであろうか? たとえ理論的に実現可能であるとしても, いかなる技 術的問題が存在し, いかなる条件が課せられることに なるであろうか?また, 光速に近い速さは困難である にしても, 現在あるいは近い将来の技術的水準で実現 可能なロケットはどの程度の速さが得られ, またそれ はいかなるタイプの推進システムであろうか?

本敲では、はじめにロケットの一般的な特徴と先端 的宇宙推進の現状を述べて、将来の亜光速ロケットの 可能性を展望してみよう。

2. ロケットの一般的特徴

相対論を考慮した,静止系からみたロケットの運動 方程式は,

$$d\left(\frac{Mu}{\sqrt{1-u^{2}/c^{2}}}\right) = -\frac{v-u}{(1-uv/c^{2})}d\left(\frac{M}{\sqrt{1-u^{2}/c^{2}}}\right) (1)$$

で表される¹⁾. ここで, Mはロケットの静止質量, u はロケットの速度, vはロケットからみた推進剤の排 気速度, cは光の速度である. 式の変形を行うと

$$\frac{dM}{M} = -\frac{du}{v(1-u^2/c^2)}$$
 (2)

が得られる.初期質量M_iのロケットが一定排気速度v で静止状態からuまで加速されたものとすると,(2)式 の積分から

$$\sqrt[\ln n]{\frac{1+u/c}{1-u/c}} = \frac{v}{c} \ln \frac{M_{i}}{M}$$
(3)

が得られる.特にu≪cの場合は,よく知られたロケッ トの関係式

〒113 東京都文京区本郷7-3-1

$$u = v \ln \frac{M_i}{M}$$
(4)

Yoshihiro Arakawa

義

博*

荒

Ш

が得られる. これらの関係を図示すると図-1のように なる. u/cは, M_i/Mが増大するにつれて大きくなり, またこれは当然のことではあるが V が大きいほど大き くなっている. この図から明らかなように,相対論的 な影響が現れるのは, ロケットの速度が光速の 1/10 以上になってからであり,後述の速度領域 u/c < 0.1 では差がみられない. 従って,以降の議論では相対論 を考慮しないことで話を進めよう.

ロケット推進の性能をあらわすパラメータとして比 推力(specific impulse)がよく使われる. 比推力 は単位推進剤重量あたりの推力と定義され,

Isp =F/mg=v/g (5)
で表される.ここで、Ispは比推力(秒の単位で表される)、Fは推力、mは推進剤質量流量、gは地上における重力加速度である.(5)式にみられるように、比

図-1 速度増分と質量比M_i/Mの関係

^{*} 東京大学工学部航空宇宙工学科教授

推力は排気速度に比例する. ロケットの初期質量を $M_i = M_{\mu} + M_e + M_{\mu}$ (6) で表されるものとしよう. ここで、 M_{μ} はペイロード 質量、 M_{μ} は推進剤質量、 M_e は構造質量である. この 状態から、ロケットが推進剤がなくなるまで加速され て速度増分 ΔV を得たとすると、ペイロード比 $\Lambda =$ M_{μ}/M_i 、構造係数 $\varepsilon = M_e/(M_{\mu}+M_e)$ を用いると、(4) 式から

 $\Delta V = -v \ln \{ \varepsilon + \Lambda (1 - \varepsilon) \}$ (7) が得られる. この式は単段ロケットの場合であるが, --般にN段ロケットの場合には,

$$\Delta V = -Nv \ln \left\{ \varepsilon + \Lambda^{\frac{1}{N}} (1-\varepsilon) \right\}$$
(8)

が得られる²⁾. ただし、排気速度、構造係数ともに段 によって変わらないものとする. 図-2は、 $\varepsilon = 0.1$ の 場合の Λ と速度比 Δ V/vの関係を表したものである. この図からわかるように、ロケットが多段になるにつ れて速度比の限界値は大きくなっている. しかしなが ら、Λ=0.001とした場合においても、速度比は、N= 1、3の時でそれぞれ2.3、5にすぎず、速度増分が 排気速度に比べて1桁以上大きくなることはたいへん むずかしい.従って大きな速度増分を達成するには比 推力を高めなければいけないということになる.

話は本敲での本筋から若干それるが、速度増分につ いて述べてみたい、本敲での速度増分とはロケットの 理想速度と呼ばれるものであり、真空、無重力の状態 で一直線に飛行した時に得られる速度を指し、初期速 度が0の場合には最終到達速度を表している。しかし ながら、深宇宙航行用のロケットならともかく通常ロ ケットは二次元、三次元的な軌道を描き、また加速・ 減速を繰り返す.従って一般には、速度増分とは、そ れぞれの推力作動段階iで得られたムViの絶対値の和 を指す、表1にそれぞれの宇宙ミッションを遂行する に必要な速度増分を示す。例えば地上から低高度軌道 (LEO) までの△Vは7.6km/s, LEOからGEO(静 止軌道) では4.2km/s である. LEOから0.7年で火星 周回軌道へ入るミッションではΔV=5.7km/s であ り、これを比推力500秒(排気速度約5km/s)の単 段ロケットで行うとした場合には、ペイロード比は約 0.3となり、充分に遂行可能なロケットであると言え る. これに対して、LEOから海王星の周回軌道へ5 年で入るミッションの場合には、比推力500秒のロケッ トでは多段にしても遂行不可能となり, 1桁以上高い 比推力の推進システムをもつロケットが必要であると いうことになる.

化学推進の場合, 排気速度は,

 $v = C_F \cdot C^*$

(9)

で表される. C_rは推力係数であり,ノズルの性能を 表す指標となり,膨張比にもよるが,通常1~2の範

表1 典型的な宇宙ミッションの必要速度3)

Mission	ΔV , km/s	
Earth surface to LEO	7.6	
LEO to GEO	4.2	
LEO to Earth escape	3.2	
LEO to lunar orbit (7 days)	3.9	
LEO to Mars orbit (0.7 yr)	5.7	
LEO to Mars orbit (40 yr)	85.0	
LEO to Neptune orbit (29.9yr)	13.4	
LEO to Neptune orbit (5 yr)	70	
LEO to solar escape	8.7	
LEO to 1000 AU (50 yr)	142	
LEO to α -Centauri (50 yr)	30,000	

囲にある. C[•]は特性排気速度であって, 簡単な一次 元ノズル流の計算から

$$C^{*} = \frac{\sqrt{\kappa RT}}{\kappa \sqrt{\left(\frac{2}{\kappa+1}\right)^{\frac{K+1}{K-1}}}} \tag{10}$$

が求められる⁴⁾. ここで, κ, R, Tは, それぞれ, 燃焼ガスの比熱比, ガス定数, 温度であり, これらの 値は化学平衡計算よって求められる. 液体酸素・液体 水素の組合せの場合には, 液体ロケットエンジンのな かで最も高いC^{*}が得られるが, それでも高々2.5km/s であり, 500秒以上の比推力を得ることはむずかしい ものである. しかしながら, 今日の宇宙開発の現状を 考えれば, その大部分が地球近傍のミッションで, 必 要速度は15km/s 以下であり, ペイロード比は低くな るが比推力400秒程度の化学推進でも充分に遂行でき る.

3. 先端的宇宙推進の現状

3.1 原子力推進

60年代に米国で開発され、地上試験まで行われた NERVA (Nuclear Engine for Rocket Vehicle Application)計画の原子力ロケットエンジンは⁵⁾, 核分裂で得られる熱エネルギーを利用して、推進剤を 加熱・加速するもので、約800秒と高い比推力が得ら れている.これは、推進剤に水素のみを使用している ためであって、安定かつ安全な作動を考慮して、ガス 温度は2.500Kと低めに抑えられているものの、その 平均分子量は2以下と小さく、これが高いガス定数に つながり、(10)式(原子力推進にも適用できる)から 得られるC*は化学推進の2倍程度の高い値を示すこ とになる.熱解離を含む化学平衡の計算から求めた比 推力の結果の一例を図-3に示す. 横軸は単位推進剤流 量あたりの熱入力である、入力密度が大きくなるにつ れて、ガス温度が上昇し、比推力が上昇することがわか る. NERVAのエンジンでは、入力密度が35MJ/kg 程度であるので、比推力が800秒程度と計算される. 現在米国において軌道間輸送や有人火星探査ミッショ ン用にと計画されている原子力エンジンは⁶⁾, 炉心の 改良によりガス温度を3000Kまでに高めることが可能 とされ、この図からわかるように、これは入力密度を 50MJ/kg までに高めたことにあたり、これによって 950秒程度の比推力が得られるという結果になる. こ うした原子力エンジンの宇宙航行ミッションへの適用 は、飛行時間の短縮につながるばかりでなく、図-2に

図-3 原子力推進における比推力と入力密度の関係

示されるように、高い比推力がペイロード比の改善を もたらし、運用コストの大幅な低減を可能にするもの であろう. さらに比推力を高めるという点については、 固体炉心の原子力エンジンの場合には、燃料を含む炉 心材、炉心保持部などの材料の耐熱性の問題から、こ れ以上ガス温度を高めることは困難とされ、より技術 的にはむずかしいガス炉心の出現を待たなければなら ない.

3.2 電気推進

さらに高い比推力を発生するものとして、電気推進 がある.これは、太陽電池、原子力電源などで得られ た電気エネルギーを推進剤に注入し、プラズマを発生 させ、ローレンツ力や静電力を利用して高い比推力を 得ようとするものである.電気推進の歴史は30年にも 及び、これまで数多くの推進機が考案されてきたが、 現在も研究開発が進められている加速方式の異なる代 表的なものを3つ簡単に紹介しよう.

電熱加速型には,推進剤の加熱に電熱線の抵抗の発 熱を利用したレジストジェット,マイクロ波により加 熱を利用したもの,アーク放電による加熱を利用した アークジェットなどがある.原理的には,化学推進に おける化学反応エネルギーが外部から加えられる電気 エネルギーに置き換わったものに相当し,加熱された 高温ガスがノズルで空力的加速を受ける.これらのな かで,アークジェットは,実用化に最も近いといわれ, 日本,欧州,米国で盛んに研究開発されている.入力 レベル,推進剤の流量・種類の組合せにもよるが,電 気推進では比較的低比推力の範囲(Isp=500~2,000 秒)及び比較的高い推進効率(η=30~60%)が得ら れる推進機である.このような比推力レベルの推進機 は,限られた電気入力Pのもとで,推力が

図-4 外部磁場型MPDジェット推進機¹⁾

図-5 電子衝撃型イオンエンジン(NASA LeRC)

 $F = \dot{m}v = 2 \eta P/v$ (1) となることから、できるだけ大きな推力を必要とする ミッションに適している.

電磁加速を主な加速機構とする推進機に, MPD (magnetoplasmadynamic) ジェットがある. 推進 剤をアーク放電によって加熱, 電離した上に, 放電電 流とそれによってできる誘導磁場とのローレンツ力に よって加速する. この体積力を放電領域にわたって積 分した電磁推力F_mは

 $F_m = b J^2 \tag{12}$

で表される. ここで, Jは放電電流, bは電流分布, 電極形状に依存する係数であるが, およそ10⁻⁷H/m である. この式からわかるように, F_mが放電電流の 二乗に比例して増大し, 推進剤流量に依存しないこと から, 比推力はJ²/mに比例して大きくなる. しかし ながら、このJ³/mがある限界値を越えると、不安定 な放電や電流集中を引き起こし、電極の損耗の急激な 上昇を招くため、比推力に上限があるものと言えよう. またソレノイドコイル、永久磁石等による外部磁場を 放電領域に印加して、これにより生じたホール電流 と外部磁場との作用による電磁加速を利用するMPD ジェットもある(図-4参照).水素を推進剤とした場 合には、比推力は10,000秒程度に達することが可能で ある⁷⁾. MPDジェットはイオンエンジンに存在する 空間電荷制限電流のような制約を受けないため、推力 密度を高くとることが可能で、宇宙用原子力電源との 組合せで惑星間航行等の宇宙機に用いられる高出力な 推進システムとして大いに期待できよう.

静電加速型の代表的なものにイオンエンジンがあげ られる、図-5に電子衝撃型のイオンエンジンの一例を 示す. アーク放電により推進剤を放電室内でプラズマ 化し、2枚ないし3枚のグリッドで構成される引出し 電極部よりイオンビームを下流へ加速して排出する. またこれと同時に、放電部が負電荷だけを持たないよ うにするため、中和器と呼ばれている電子ビーム源よ りイオンと同数の電子を放出する. 一般にイオンエン ジンの推進効率は比推力4,000秒の時約70%と高く、 さらに高い比推力が得られるように加速電圧を上げて いくと、 プラズマ牛成のための放電損失の割合が低下 し、より高い推進効率が得られるようになる. このよ うに高い推進効率をあげることはイオンエンジンの場 合比較的容易であるが、その一方で、空間電荷制限電 流というものが存在し、大きな推力の達成には主とし て口径の増大に頼るしか方法がない、しかしながらこ れも、グリッドの熱的、構造的要因から口径/間隙の 比に限りがある。). 比推力の小さい範囲においては, 比較的低推力の推進機なので、衛星の姿勢制御や軌道 保持のためのいわゆる二次推進システムに用いられる. また加速電圧を上げて高比推力作動にすれば, 推進効 率の上昇と共に空間電荷制限電流則からビーム電流の 増大が可能で, これをクラスター化した高出力推進シ ステムは、 △Vの大きい長期作動ミッションの主推進 に適したものと考えてよいであろう.

4.亜光速ロケットの展望

次に比推力のレベルをさらに高めて, 光速の1/10 ~1/100程度の亜光速航行を可能にする推進システム について考えてみよう.

先に述べたように亜光速航行を行うためには、 v~

uになるような大きな比推力を発生する推進システム の実現が前提となる.これまでに研究開発され、実用 化されようとしているもののなかでは、イオンエンジ ンのみがその可能性を持っていると考えてよいであろ う.現在開発中のイオンエンジンの比推力は10,000秒 未満であるが、加速電圧を500kV程度までに上げるこ とにより、10⁶秒(イオンの速度が光速の1/30に相 当する)まで高めることが可能である.しかしながら、 電気推進を用いたロケットや宇宙機の場合には、推進 剤の他に電源の搭載が必要になるため、必ずしも高い 比推力が、ペイロード比を大きくし、ミッションを成 立させるという結果が得られるわけではない.電源質 量をMpwrとすると、ロケットの初期質量は

M_i = M_{Pl} + M_{Pwr} + M_c + M_P (13) となる.ここで, M_{Pwr} は電力にほぼ比例するものと みなせるので,

P = α M_{Pwr}. (4) と表される. αは定数である.また推力作動中におい て,推力,流量ともに一定であるとした場合,

 $M_{\mathfrak{p}} = \dot{\mathbf{m}} \tau$ (15) となり,排気ビームのパワーは

$$P_{b} = \frac{1}{2} \dot{m} v^{2} = \eta P$$
 (16)

で表される.これらの式を(4)式に代入して整理すると,以下の式が得られる.

 $\Lambda = \exp\left(-\frac{\Delta V}{v}\right)\left(\frac{v^{2}}{\beta \tau} + \frac{1}{1-\varepsilon}\right) - \left(\frac{v^{2}}{\beta \tau} + \frac{\varepsilon}{1-\varepsilon}\right) (1)$ となる. ただし、 $\beta = 2 \alpha \eta$ である. この Λ の v に対 する関係を示したのが図-6 である. ΔV の値が小さい 場合、すなわち速度増分が小さいミッションの場合で は、Λはνによらず、比較的大きな値を示している. これに対し、大きなΔVを必要とする場合、Λの値は νによって大きく左右され、νの最適値が存在する. ν がそれ以上に大きくなると、Λは負の値をとるように なり、このことはミッションとして成立しないことを 意味する. これは、比推力の増加が推進剤質量の低減 による利得よりも電源質量の増加による損失が大きい ためである. 図から明らかなように比推力の最適値は 近似的に

 $v_{001} \sim \sqrt{\beta\tau}$ (18) で表わすことができ、これを満足するように推進機の 機種や作動パラメータを設定しなければならない、 太陽電池を用いた電気推進はSEP (Solar Electric Propulsion)と呼ばれ、人工衛星や宇宙ステーショ ンなどの姿勢制御、軌道保持、軌道間輸送などの地球 近傍ミッションに用いられ、数年以内に宇宙で運用さ れようとしている、現段階での典型的な値a = 80W/ kg⁹, $\eta = 0.7$ を用いると、1年($\tau = 3.2 \times 10^7$ 秒) の作動では、 $v_{001} \sim 60$ km/s となる.

次に、ΔVの非常に大きなミッション、例えば恒星 間飛行ミッションを可能とするような亜光速ロケット について考えてみよう. この場合には太陽光エネルギー が利用できないので原子力電源を利用する. こうした 電気推進はNEP (Nuclear Electric Propulsion) と呼ばれる. 電源質量についてみると, 現在米国で開 発中の電気出力100kW級の宇宙用原子力電源SP-100 では a~36W/kg とSEPに比べて優れているわけで はない5). しかしながら、電源質量の大部分を占める のは、熱放射板などのエネルギー変換に関係した部分 であって、コンバータの変更や変換効率の向上を計れ ばかなり電源質量を低減することは可能であるものと みられる. 例えばランキンサイクルを用いた方式では α=3.8kW/kg になるとの予測¹⁰もあり、今後の技術 革新のいかんでは $\alpha = 10 \text{kW/kg}$ 程度は充分に可能で あるものと考えられる、イオンエンジンの効率を100 %として、50年の宇宙航行を設定すると、 Vopt~5.62 ×10°m/sとなる. これらの値を切式に代入し、構造 質量も現在のレベルより1桁低いε=0.01が実現でき たとしても、Λ≥0を満足するロケットの速度増分は 4.5×10°m/sとなり、この値は光速の僅か1.5%にす ぎない.従って、NEPでは50年かけても1光年の距 離を飛行できないという結論が得られ、惑星間航行ま での推進システムという感がある.

核融合推進は、60年代から70年代にかけて米国の原 子力研究機関で基本計画や原理を主体とした研究が進 められ、また70年代半ばには英国惑星間協会(British Interplanetary Society) のメンバーが中心となっ て、Daedalus計画が発足し、以後50年の技術革新の 範囲内で可能となりうる推進装置の概念設計が行われ た…,重水素、ヘリウム3を燃料とした粒子ビームや レーザービームによる慣性核融合を行い、発生した熱 エネルギーを磁場によって軸方向運動エネルギーに変 換し、その反作用として推力が得られるというもので ある. 図-7にレーザービームによる慣性核融合パルス 型エンジンの概念図を示す. D-He³を主成分とする 燃料ペレットを推進剤とした場合には、比エネルギー は0.6×10"J/kgとなる. これにより理論的に可能な 比推力は10°秒であるが、反応に於ける損失、エネル ギー変換での損失などを考慮すると、1.4×10⁵秒と計 算され、これで得られる飛行速度はNEPシステムで 得られるものと同程度になる.

反物質推進は、通常の物質と反物質の対消滅によっ て発生するエネルギーを利用するもので、比エネルギー が9×10¹⁶J/kgと化学推進に比較して10⁹倍、核融合 に対しても200倍と極めて大きい、図-8に示すように、 陽子と反陽子の反応より生じた正負に荷電した高エネ ルギーのパイ中間子を強力な磁場で推力発生方向に偏 向させる.これにより光速に近い排気速度が得られる ため、恒星間飛行を可能にする唯一の宇宙推進装置で あると言える.またわずかな反物質でも、反物質に水 素等の推進剤を加えることにより、電気推進と同程度 の比推力で化学推進相当の推力の発生が可能となるた め、地球近傍のミッション、有人惑星ミッションなど 適用範囲は広い.最近10年間米国を中心として理論研

図-7 レーザー核融合推進の概念

究が活発に行われるようになってきた.今後克服すべ き技術課題は数多いが,なかでも反物質をいかに効率 よく,かつ安価に製造できるか,また長期にわたる宇 宙航行ミッションに必要な量の反物質をいかに軽量の 容器に貯蔵できるかが鍵になるものと思われる.仮に 推進剤の10倍の質量が容器に要した場合には,エネル ギー変換効率が100%としても,達成できる飛行速度 は排気速度の10%以下になる.

5.まとめ

以上宇宙推進の特徴と現状を概観し、亜光速ロケッ トを可能にする推進システムの条件や課題を検討して きた.現在宇宙開発は宇宙利用という観点からは端を 発したばかりであって、宇宙航行のためのロケット推 進も化学推進のみである.高比推力の電気推進は数年 内に実用化されようとしている段階であるが、主流な ものになるにはしばらく時間を要するであろう.従っ

て、亜光速ロケットの本格的な研究開発はその先の段 階になるであろう。本敲の議論のなかで得られたこと は、光速の1%程度のロケットはイオンエンジンなど を用いた既存の推進技術の範囲で十分に可能であるこ と、それ以上の飛行速度を得るには反物質推進の利用 が不可欠であるということである。しかしながら、こ れを実現するには、技術的なブレークスルーが必要で あり、地道な基礎研究の積み重ねが今後ますます重要 になってくる。

参考文献

- Stuhlinger, E.; Ion Propulsion for Space Flight (1964) McGraw-Hill Book Co.
- Cornelisse, J.W., et al.; Rocket Propulsion and Spaceflight Dynamics (1979) Pitman Pub.
- 3) Garrison, P. W., Stocky, J.F.; Future Spacecraft Propulsion, Journal of Propulsion and Power Vol.4, No.6 (1988) 520~525.
- 4) Sutton, G. P.; Rocket Propulsion Element (1992) John-Wiley Sons.
- 5) Angelo, J. A., Jr., Buden, D.; Space Nuclear Power

(1985) Orbit Book Co.

- Borowski, S.K., et al.; Nuclear Thermal Rockets: Next Step to Space, Aerospace America June (1989) 16~29.
- 7) Sasoh, A., Arakawa, Y.; Electromagnetic Effects in an Applied-Field Magnetoplasmadynamic Thruster, Journal of Propulsion and Power Vol.8, No.1 (1992) 98~102.
- Wilbur, P. J., et al.; Approach to the Parametric Design of Ion Thrusters, Journal of Propulsion and Power Vol.6, No.5 (1990) 575~583.
- Cockran, C. D., et al.; Space Handbook AU-18 (1985) Air University Press.
- El-Genk, M. S., et al.; System Design Optimization for Multimegawatt Space Nuclear Power Applications, Journal of Propulsion and Power Vol.6, No.2 (1990) 194~202.
- Martin, A.R., Bond, A.; Project Daedalus: The Propulsion System, Journal of the British Interplanetary Society (1978).
- Forward, R.L.; Antimatter Propulsion, Journal of the British Interplanetary Society Vol.35 (1982) 391 ~395.

協費	行事	ごあんない 第10回混相詞	ኪレクチャーシリーズ
			2相流体」開催ごあんない
(主	催〕	日本混相流学会	〔 申込締切〕 5月31日
〔協	賛〕	化学工学会,空気調和•衛生工学会	他 〔申 込 先〕 日本混相流学会 企画運営委員会
(日	時〕	平成5年6月3日休10:00~17:	00 〒659 芦屋市公光町9-7-202
(会	場〕	大阪市立大学文化交流センター	㈱学術出版印刷内
		(大阪市北区梅田1-1-3-1700)	TEL 0797-38-3390, FAX 0797-38-3351
〔参加費〕		会員(協賛団体会員含む)10,000	円 ■問い合わせ先
		会員外 20,000円, 学生 2,500P] 関西大学工学部機械システム工学科
			大場謙吉
			TEL 06-388-1121 (EX 5793)