特 集 光エネルギー利用技術

レーザー利用計測技術の現状-燃焼を中心にして-

Recent Advances in Combustion Diagnostics Using Laser-based Methods

1. はじめに

酸性雨、オゾン層破壊、温暖化現象など地球規模の 環境問題の重要性が、最近、広く認識されるようになっ てきている.これらの環境問題について共通して言え ることは、いずれも生活環境を維持、発展させるため に消費するエネルギーがその一因となっていることで ある.様々な代替エネルギーへの転換が進められては いるが、石油、石炭等、化石燃料の燃焼によるエネル ギー消費は、その大半を占めており、効率の良い燃焼 の達成や制御は、非常に重要で、今後とも現象の解明 に基づいて、精度が高くかつ効率良く制御する技術の 発展が必要である.

レーザーによる計測や制御は,対象となる場を乱さ ずに非接触に遠隔から監視,制御に還元する手法で, これまでに確認できなかった因子を容易に可視化,制 御する技術へと結び付けることが可能である.ミリ波, マイクロ波を利用しての非接触計測技術も,従来から, 存在するが,とりわけ,レーザー(光)計測は,時間 的,空間的分解能が高く,また,波長の選択性といっ た点で,特定分子を効率よく検出できる利点がある.

レーザーの計測は、以前からプラズマや反応プラズ マ等の高温,高密度場を対象としてよく使用されてい た.このような計測場は、他の計測方法では容易に現 象に追従できない,流れ,拡散,混合,反応,熱移動 が複合した場である.最近では、レーザー加工のプラ ズマ現象観測にもレーザー誘起蛍光計測が使用されて いる¹⁾.高密度のプラズマの計測場と比較すると,燃 焼場そのものやあるいは燃焼排気ガス流動場の計測は、 温度や密度がやや低く密度濃度場の勾配は緩やかな, いわば,低密度のプラズマ計測と位置付けることがで

* 石川島播磨重工業㈱航空宇宙事業本部 技術開発事業部光プロジェクト部課長 ** " " 光プロジェクト部 〒235 横浜市磯子区新中原町1 山口 滋*•小原正孝** Shigeru Yamaguchi Masataka Ohara

きる.

レーザーによる燃焼計測では、まず煤の粒子径計測 や速度場の計測が行われ、He-NeレーザーやArイオ ンレーザーが使用された. 測定は、ミー散乱や回折現 象を主体としたものが多く、レーザーへの要求も単純 に高い輝度を主体としたものであった. その後, 濃度 や温度を求めて、現象の解明や制御をするという計測 方法の開発要求が高まり,分光計測手法が採用され, それまでのハロゲンランプやナトリウムランプ光源に レーザーが置き換わる形で、レーザー吸収分光法、レー ザーラマン法、レーザー誘起蛍光法が活発に研究され てきた、このような分光測定では、分子や原子の遷移 線にレーザー波長を一致させ効率良く吸収や蛍光,ラ マン散乱を起こすように周波数輝度(spectral brightness)の高いレーザー光源が要求される、このよう な要求に対応して、光源となるレーザーの開発も進み、 赤外線領域から、可視領域、さらに紫外線領域の広い 波長範囲で装置を選択し使用することができるように なってきた、最近では、波長可変のレーザー装置も小 型で安定安価なものが入手できるようになっている. また、繰り返し周波数に制限があった固体レーザーの 高繰り返し化が実現し、半導体レーザーにも高出力な ものが出現している.時間領域では、10fs (10⁻¹⁵s) 程度の超短パルスが、実現されてきており、分子や原 子の挙動、現象を探るプローブとしてのレーザーの役 割は,ますます高くなってきている²⁾. これらを応用 すると、定常的な変化を捉える従来センサーの時間平 均的な計測、制御ではなく、むしろ非定常現象に十分 追従できる、この結果、高温の炉内の制御、内燃機関 やボイラー、煙道のガス濃度、温度分布計測等でも革 新的な計測、制御が可能となることに大きな期待が寄 せられている.

ここでは、代表的なレーザー分光計測の原理や手法 をまず概説し、レーザー計測のキーハードとなる、レー ザー光源と検出器の現状と技術展開の動向を述べる. また,最近,研究が盛んに行われている代表的な2次 元計測,4光波混合による燃焼計測装置の構成例につ いて紹介する.

2. 計測方法

分光計測は,吸収や蛍光を利用して分子との相互作 用が線形な線形分光計測と散乱や位相共役波発生をす る非線形な相互作用による非線形分光計測とに大別さ れる.各計測方法の特徴を表1に示し,以下に概説す る.

2.1 吸収分光

分子の振動回転遷移による吸収線に同調したレーザー 波長による、光の吸収効果を利用して測定を行う、レー ザーの透過光の強度変化は、吸収する分子の濃度が一 定であれば透過距離に対して指数関数的に減少すると いうLambert-Beerの法則による、長い光路(数m~ 10m) であれば、ppbレベルの検出感度が得られる. 振動回転遷移を利用する場合には、濃度の定量は、温 度の分布の影響を受けやすいが、この効果を利用して、 吸収線幅の測定を詳細に行うことによって、並進温度 を知ることもできる、電子遷移の吸収を利用する可視。 紫外線の吸収測定では、濃度測定は、一般的には、燃 焼温度の影響を受けにくい、差分吸収法では、吸収線 に一致した波長(信号光)とそれとはわずかに離調し た波長(参照光)を使用して測定を行う、すなわち、 常に信号の校正を行いながらデータ処理をするので、 一般的にS/N比が高い.ポイント計測や1次元の線 計測が主体で、2次元の面計測は、1次元の線計測の 重ね処理がほとんどである、レーザーダイオード等の 進歩とともに測定できる分子の種類が拡大して、利用 が拡大してきている³⁾.

2.2 レーザー誘起蛍光法

(Laser Induced Fluorescence, LIF)

一般的には、分子の電子遷移を利用する.可視、紫 外線領域の強度が高いパルスレーザーを使用する.あ る波長で、特定分子を励起して、励起波長とは、異なっ た波長の蛍光を検出する.蛍光の遷移確率が高ければ、 濃度の低い活性な分子を定量できる.蛍光の強度から、 分子の濃度分布が、また、蛍光スペクトルの周波数に 対する強度分布から、温度を定量することが可能であ る.これらの情報には、他の分子や原子による失活の 影響が含まれるので、その影響が極力少ない分子につ いて計測するか、その影響を取り除くため、飽和蛍光 などを利用して計測する.レーリー散乱と信号が混在 することもあり、計測を併用する場合がある.研究初 期には、CARS計測と同様に、ポイント計測であり、 光子計数レベルでの蛍光計測が行われ、1980年代後半 になって、温度や濃度分布を直接2次元的に捉える研 究が盛んに行われるようになった^{4)、5)}.火炎中のNO やOHを計測して、濃度や温度を測定した研究報告が 多い.

2.3 コヒーレント反ストークスラマン散乱法

(Coherent Anti-stokes Raman Scattering, CA RS)

一般的には分子の振動ラマン遷移を用いるものが多 く,可視から近赤外線のレーザーを使用する.

CARSはラマン散乱の一種であるが、この分光法 では放射されるラマン光が入射波と同じコヒーレント な光として観測されるため、自然放出の背景光と容易 に分離できる上, 散乱強度がラマン散乱に比して, 10°~10°倍も大きい. さらに,分子からの非弾性散乱 で、入射(励起)光の波長と散乱光の波長は、大きく 異なるため、高いS/N比で観測できる有利さがある。 窒素ガスなどの非接触温度計測などでは多くの研究実 績がある.ただし、低濃度の分子 (ppm レベルの濃 度)から信号を良く得るには、困難がある。1980年代 初頭から盛んに研究が行われ、小型可搬型の CARS 測定装置も開発されており、各種の燃焼場に適用され た⁶⁾. 最近では、ポイント計測ではあるが、他種類の ガス分子を同時に測定することも行われている。ポイ ント計測であるため、温度分布等を求めるためには後 処理の繁雑さがあり、現在は、この処理方法も研究さ れている".

2.4 4 光波混合位相共役法

(Degenerate Four Wave Mixing, DFWM)

元来,DFWMは,分子の3次の非線形感受率を利 用して位相共役波を発生させる非線形現象で,レーザー が大気中を伝播するときの揺らぎを除去する技術の1 っとして注目を浴びてきた方法である⁸⁾.検出しよう とする特定分子の吸収線に同調させて,強度の高いレー ザーを入射し,飽和吸収を起こした時に発生しうるD FWMの光強度分布(S)は,レーザーの入力強度(I) の3乗と特定分子の濃度(N)の2乗との積に比例す る.

 $S \propto N^2 \times I^3$ (1)

与えられたレーザーの入力強度(I)に対して,DFW Mの光強度(S)の分布を回転量子数(J)の異なる 2つの吸収線について測定,比較すれば,既知のJか

原 理	線形分光計測		非線形分光計測		
	吸収	レーザ 誘起蛍光 (LIF)	コヒーレント反ストークス ラマン散乱(CARS)	4 光波混合 (DFWM)	
使用波長領域	中赤外線(2~10μm) 可視~紫外線(~200μm)	可視~紫外線 (~200nm)	近赤外~紫外線(~200nm)	可視~紫外線 (~200nm)	
測定対象分子等	CH₄, NO, CO, NH₃等	CH, NO, OH, O₂ アルカリ蒸気等	N₂, O₂等	NO, OH, O₂ アルカリ蒸気等	
主に測定できる パラメータ	濃 度	濃 度 温 度	温 度	濃 度 温 度	
計測の形状	ポイント計測 1 次元線計測	2 次元面計測 (ポイント計測 1 次元線計測)	ポイント計測	2 次元面計測 (ポイント計測 1 次元線計測)	
検出の下限界	ppb~ppm	~ppm	~%	~ppm	
適用場所	燃焼ガス中の濃度計測 排気ガス中の濃度計測	火炎の反応観測	火炎の温度観測 排気ガスの温度計測	火炎の反応観測	
備考			多種の分子を同時観測可 高い空間分解能	CARSの 2 次元展開	

表1 各種分光計測の特徴

ら温度の面分布を知ることができる^{9,100}. 近年,注目 されるようになり,1990年台になって,本格的に燃焼 場に適用されるようになった.検出される光はコヒー レント光で立体角の損失が小さくなるため,測定対象 から測定光学系の距離が大きく,また,光学系の口径 が小さい場合にも,確実に2次元面情報を捉えられる. さらに,火炎等の温度分布による屈折率分布揺らぎを 位相共役波の発生によって補償するので,検出される 2次元光強度分布は,鮮明なものとなり,空間分解能 が高い.CARSの高感度化と2次元計測への展開と いう特徴を持つ.

3. レーザー光源と検出素子

3.1 レーザー光源

一般的な,レーザー計測,レーザードップラー計測 などでは,レーザーの安定性や装置のコンパクト性が 重視されていた.使用されてきたレーザーも,He-Neレーザー,Arイオンレーザー等連続発振のレーザー を中心にレーザーの空間的高輝度性を利用した応用が 盛んであった.しかし,分光計測には,パルス発振や 変調を利用したこのようなレーザーでは,周波数輝度 に加えて,様々なガス分子の分光特性に同調できる広 帯域な波長の可変性や選択性が必要となる.

(1)波長可変レーザー

広帯域波長可変レーザーとして、色素レーザー(300~950nm)、Ti:Al₂O₃レーザー(700~930nm)やCr:

LiSrAlF₆レーザー (780~1010nm), Co:MgF₂レー ザー (1.75~2.5µm), 光パラメトリック発振のレー ザー (400nm~2.5µm) があり,最近では,市販製 品の性能も充実してきている.

色素レーザー, Ti: Al₂O₃レーザーやCr: LiSrAl F₅レーザー, Co: MgF₂レーザーは, レーザー媒質 として動作する色素や結晶内部のエネルギー準位を使 用するレーザー発振器である. これらのレーザーでは, 励起光源の品質に大きな影響を受けることなく, レー ザー発振を得られるが, 媒質の利得が存在する波長域 のみ波長可変である. これに対して, 光パラメトリッ ク発振レーザーは, 波長の可変範囲では, 他のレーザー に比較して大きな優位性があるが, この方式は, レー ザー発振器というより, 使用する励起レーザーの波長 変換装置といったほうがよく, 励起レーザー光の安定 性やスペクトル特性を強く反映した出力が得られ る^{110, 120}.

1) 色素レーザー(レーザー励起の液体レーザー)

近赤外線領域から可視光線,紫外線領域の波長で広 範囲にスキャンをせずにレーザーを使用するという場 合,色素レーザーは開発の歴史も長くそのラインアッ プや周辺機器の豊富さから最も研究開発用として使用 しやすいレーザーに位置づけられる.すなわち,1色 素の発振波長範囲は実用上最大でも50nm程度までに 限られるが,色素種類のデータベースが,豊富であり, 得たい波長を容易に選択できる.300nm~950nmと いった領域で高い強度をもつレーザー出力が得られる が、紫外線への波長変換は、KTP、KDP、BBOと いった結晶による高調波変換によって行われる.より 長波長の赤外線への変換では、和周波や差周波のミキ シングが試みられているが、安定な出力を得るには光 学系も複雑で困難な点が多い.

燃焼計測に多く用いられてきた色素レーザーは、強度の比較的高いパルスレーザーが多く用いられている. その励起には、Nd:YAGレーザーの第二高調波 (SHG,532nm)や第三高調波(THG,355nm),エ キシマレーザー(248,308nm)といったレーザー光 源が良く用いられており、平均パワーやピーク強度, 繰り返しといった点で各々に特徴があり計測の用途に 応じて選択できる.

パルス発振でも、スペクトルの線幅は、容易に1 pm以下に狭めることが実現されており、分光計測上 に必要な仕様を提供できる.

 2)レーザー励起の固体レーザー(Ti: Al₂O₃レー ザー)

ここ7~8年程度のあいだに最も注目され開発され てきたレーザーであるが、それは、むしろ、広利得領 域をもつスペクトルから、超短パルス発生の研究が進 んだためといえる^{III}. Ti: Al₂O₃レーザーのスペクト ルは、近赤外線領域で、しかし、基本波700nm~930 nmの領域はもちろんのこと、高調波200nm~310nm、 350nm~460nmといった領域では、十分に安定な出 力が得られている.

各発振波長で,発振までの遅延時間があり同時に二 波長を得て波長のミキシングようとすると技術的に困 難な側面が出てくる. 色素レーザーと同様な斜め入射 の回折格子をもつ発振器では,パルス発振でも,スペ クトルの線幅は,容易に~pm程度に狭めることが実 現されており,分光計測上に必要な仕様を満足できる. 筆者らも,小型のバッテリー駆動のTi:Al₂O₃レー ザー装置を開発し,既に,フィールド等での計測を開 始している¹³⁾.

3) 光パラメトリック発振

光パラメトリック発振(Optical Prametric Oscillator, OPO)は、いまのところ比較的安定な Nd:Y AG レーザー励起のものが多く、2.5 μ mまでの発振 線で同調可能である。KTP、BBO、LBO、等の非線 形結晶の品質が充実するとともに、その性能が高まっ てきたといえる。

入射波長の変換は結晶の角度を制御するか、温度を

制御するかで行う.波長変換の線幅は,結晶に変換の 許容角度があるため,広くなる.このため,容易には, 高い周波数輝度を得られない.いくつかの市販品では, 発振器内部に回折格子を挿入して波長選択する方式が とられている.また他の解決方法として,励起レーザー 光源に極度に狭帯域化したシード光を注入して励起レー ザーを狭帯域化する手法が開発され,実験室レベルで 使用されている.LD励起のNd:YAGレーザーとの 組み合わせ等から,全固体化の波長可変レーザー装置 ができるとかなり実用にも近くなるであろう³⁾.

(2)ガスレーザー

中赤外線の発振線をもつ炭酸ガスレーザーは、高出 カレーザーとして主に加工機としての用途が高いが、 一方、測距儀用やレーザーレーダーの光源として小型 で高品質な光源が市販されている。未燃の有毒ガスに 関連した検出、燃焼排気ガス中のアンモニア成分の検 出に多く用いられている。小型高出力なレーザーが多 く市販されている。9~10µmのQ、Rブランチの発 振線にあわせて検出ガスを選択できる。レーザー出力 は、ほとんどの場合、10kHz程度のRF変調がかかっ た擬似連続発振で、1つのパルスはµs程度のパルス 幅を持つ.

紫外線で発振するエキシマレーザーは、193,248, 308nmが代表的な波長で、容易に高出力なものが入 手できる.波長可変領域は、中心波長に対して±2n m程度となる.10ns程度のパルス幅で、100mJ/パ ルスクラスの出力は、容易に得られるので、測定時の 光学系の損失をあまり考慮しないで使用できる.小型 化安定化が進んでおり、実験室レベルのLIFや4光波 混合の測定には、重要な機器となると考えられる.ハ ロゲン系のガスを使用するレーザーであるため、現在、 封じ切型で、ガスを頻繁に交換しないものが登場して、 炭酸ガスレーザーの技術レベルの成熟度に近づきつつ ある.

(3) レーザダイオード (Laser Diode, LD) 及びLD励起レーザー

小型で、インラインでのプロセスモニターとして LDに優るものはないであろう. これまでに一般化し て使用されているのは、通信用の1.3、1.5 μ mの他、 906nm、800nm等である. ほとんどすべての燃焼計 測応用のLDは、吸收分析を目的に製作され使用され ている. これは、発振線幅が、十分に狭く(~5MHz 程度)なっており、変調がかけられ、ヘテロダイン検 出などでS/Nを向上できるためである¹⁰. ピーク出

図-1 計測用各種レーザ装置の出力と波長

力は高々~W程度に制限されている.可変波長領域は, 製作時に指定ができるが,広いものでも,実用上10 nm程度に制限される.微細加工により,半導体レー ザー本体に,回折格子を埋め込む構造で,波長可変に しているものも製作されているが,まだ初期の研究段 階である.

最近,多くの短波長化に関する研究がなされている が,青緑色の発振をめざした研究が多い.これは,D VD等のメモリー記録光源を主眼としたものである. 安価で高出力のものが登場するようになると,SHG 等による波長変換も考えられ,燃焼計測の新しい紫外 光源としても期待できる¹⁹.

一方,赤外線領域で,ガスレーザーや固体レーザー で容易に出力を得られない、3~9µmでは,LD光 源の有用性は高い.この領域では、いくつかのLDが 製品化され測定結果も報告されている¹⁰.赤外線領域 のLDは、そのほとんどが冷却を必要としており、レー ザー発振器は非常に小型であるが、周辺機器を含める とその装置の規模は他の波長可変レーザーとあまり大 きな差異はない場合もある.

これまで、燃焼ガスに関連した計測に使用されているパルスレーザーの種類と検出ガス種を図-1に示す.

3.2 光の検出

燃焼分野でのレーザー計測,制御における光信号は, たとえ高出力のパルスレーザーを使用しても,多くの 場合,微量分子からの微弱な蛍光や,微量な透過光の 変化を検出しなければならない.検出素子には,高感 度,高精度で,広いダイナミックレンジが,要求され る.また,広い波長領域にわたって,また応答周波数 も高く安定に動作するといったことも必要となり,技 術的に相反する困難な課題が多く要求される.

(1) 1次元検出器

光の検出技術では、近年の半導体素子の技術が成熟 してきていることは、広く認識されている点といって 良いであろう. 特に、1980年半ばからは、アバランシェ フォトダイオード (Avalanche Photo Diode APD) による光子計数 (フォトンカウンティング) レベルで の光検出が、実現されており、最近では、その波長範 囲も400nm~1.5μmまで拡がってきている^{17).18)}. 各 種光検出器の波長に対する相対的感度の指標を図-2に 示す¹⁹⁾.

赤外線の2.0µm以上の領域では、検出器の感度を 維持するのに素子の冷却等が必要である。

(2) 2次元検出器(撮像管,撮像素子)

紫外線,可視から近赤外線の波長帯域を考えたとき,

SPECTRAL BAND (µm)	OPERATION TEMPERATURE (K)	ELEMENT NUMBER	PIXEL SIZE (µm²)	FILLING FACTOR (%)
3-5	70-85	256×256	50×50	>85
		512×512	25×25	>80
		1024×1		100
3-5	195	256×256	40×40	>60
		512×512	27×27	>65
		(under de-		
		velopment)		
3-7	40-90	512×512	32×25	66
		640×480	20×20	80
		1040×1040	17×17	71
3-7	<50	128×128	50×50	>90
7-11	77	256×256	50×50	>65
8-12	77	256×256	40×40	>75
		640×480	27×27	>70
8-17	<30	128×128	75×75	>90
12-36	<30	128×128	25×35	>90
1-30	~300	192×128	35×35	>65
	SPECTRAL BAND (μm) 3-5 3-5 3-7 3-7 3-7 7-11 8-12 8-17 12-36 1-30	SPECTRAL BAND (µm) OPERATION TEMPERATURE (K) 3-5 70-85 3-5 195 3-7 40-90 3-7 <50 7-11 8-12 77 8-17 12-36 <30 ~300	SPECTRAL BAND (µm) OPERATION TEMPERATURE (K) ELEMENT NUMBER 3-5 70-85 256×256 512×512 1024×1 3-5 195 256×256 512×512 (under de- velopment) 3-7 40-90 512×512 640×480 1040×1040 3-7 <50	$\begin{array}{c} {\rm SPECTRAL} \\ {\rm BAND} \\ (\mu{\rm m}) \\ {\rm SPECTRAL} \\ (\mu{\rm m}) \\ {\rm SPECTRAL} \\ (\mu{\rm m}) \\ {\rm SPECTRAL} \\ (\mu{\rm m}) \\ {\rm SIZE} \\ (\mu{\rm m}^2) \\ {\rm SIZE} \\ (\mu{\rm m}^2) \\ {\rm SIZE} \\$

表2 赤外2次元半導体撮像素子¹⁹⁾

図-2 光検出素子の受光感度と波長の関係¹⁹⁾

撮像管の性能は、いまだにCCD半導体素子の性能よ り高いといえるであろう.撮像管では、SITや、ハー ピコンといった素子は、素子単体性能は非常に高い²⁰⁾. これらの、素子はいずれも低雑音で、マイクロチャネ ルプレート方式のイメージインテンシファイアとCC Dデジタルカメラの組み合わせ(ICCDデジタルカメ ラ)と比較すると画像品質が高いことが特徴である.

光子を捉えるといった観点からするとICCDは、短 いパルスのレーザーと組み合わせると短時間のゲート (10ns程度)が利用でき,背景光の輝度が高い場合に も,抽出したい信号を取り出せる.検出信号の線形性 といった観点からも、ダイナミックレンジは、ICCD のデジタルカメラが優れ、16ビット相当のものが容易 に入手できるため、蛍光輝度から分子濃度を求める際 などに有利といえる.また、ICCDデジタルカメラで は、画像蓄積をして素子からの信号読み出し時の雑音 を低減できる.ただし、ビデオレートでは、1秒に30 フレームの画像信号が取り出せるのに対し、低雑音の データ取得では1秒に3フレーム程度に制限される. 今後はさらに画質の向上が期待される.

一方,赤外線領域では,最近ではInSb,HgCdTe, GaAs等のIRCCDが登場し,十分な性能が臨めるようになってきている²⁰. 今後,赤外線レーザーとの組み合わせで,燃焼排気ガスの監視等に使用できる. 2 次元CCD素子の,波長と種類を表2に示す.

(3) その他の高感度検出技術

波長の選択の自由度は、まだ、少ないが、微弱な光 信号をS/N良く増幅する方法として、最近、希土類 ドープの光ファイバーを増幅器として利用し光検出す る方法が行われている、増幅媒体である光ファイバの 長さを増すと増幅率が高くなり、周波数応答性も高い、 微弱光を直接、光/電気信号の変換をおこなって電気 信号の増幅度を向上させようとすると、回路雑音の低 減等に困難がともなう、しかし、光ファイバアンプで は、電気信号に変換する前に微弱光を十分に光増幅を おこなって、電気信号に変換するのでも回路雑音が少

図-3 光ファイバ増幅器の構成例21)

なくS/N比を改善するという設計ができる²¹⁾. 100d B程度の増幅は、十分に可能であろう. この光検出、 増幅器の構成の模式図を図-3に示す²²⁾. 励起光源とし ては通信分野で頻繁に使用されている、レーザーダイ オードで、小型のシステムが期待できる. 通信分野で は、汎用となりつつあるこの技術は、今後、実環境下 で燃焼分野の計測での応用は、レーザー波長と特定の 分子の遷移線が一致するような領域では、比較的容易 ではないかと考えられている. とりわけ、500nm~2.0 μm程度の波長では、今後、燃焼計測でも興味ある応 用が考えられる.

4. 計測例

ここでは、波長可変レーザーとイメージインテンシファイアの組み合わせから燃焼火炎中のOHの4光波 混合技術の温度計測装置の構成と測定結果概略についてP. Ewart等の測定を例にあげて述べる²⁰.

レーザー光源として、Nd:YAGレーザーを励起 源とした色素レーザーを基本波に使用した.非線形光 学結晶により波長は、306~310nmの紫外線領域で可 変波長として、線幅は、0.16cm⁻¹、出力は、0.2~0.3 mJ/パルス、パルス幅約10nsを得ている.光学系の 構成を図-4に示す.

このレーザー光をOHの吸収線に同調した波長で発 振させ、DFWM発生の光学系を構成する. 具体的に は、ビーム参照光とプローブ光の2つに分岐して、メ タンと空気の燃焼火炎に多少の角度を持って入射させ、 イメージインテンシファイア付のCCD素子で、DFW M信号光を観測する. 測定領域近辺のレーザーの周波 数輝度は500kW/cm²/cm⁻¹程度と考えられる.

この観測を2つの異なった吸収遷移線について行い, コンピュータにより2次元面内の各点でDFWM信号 光強度,励起レーザーの参照強度を比較,演算処理す ると,温度分布図が作製できる.その結果を図-5に示 す.分解能は,約100μm程度である.1600~1800K の測定結果に対して,計算の過程から10%程度の検出 誤差が見積もられる.

この実験では、特殊なUVカメラレンズは、使用せず、単レンズで測定が可能となっている。また使用した、ICCD素子の検出下限界は、10⁻³1x程度と中程度の感度であり、検出できる、OHの濃度は100~500pp mレベルであると予想できる²⁰.しかし、カメラの感度を10⁻⁷1x程度まで高感度化を図ればppmレベルの 微量分子も測定が可能と考えられる.

5. おわりに

燃焼場の計測にレーザー光源は有力な "道具"で, その技術進展は著しい. 火炎内の流速, 温度, 濃度の 瞬時, 2次元分布の測定が可能になりつつある. これ らから, 火炎内のより詳細な現象, 機構の解明がさら

Schematic representation of the apparatus used for recording images by DFWM in the OH radical in a flame : Amp. 1 and Amp.2, dye cell amplifiers ; S. F, spatial filter ; D, dispersing prism ; P, polarizing prism ; S. H. X^{al} , second harmonic generating crystal ; F, filter ; GS, glass slide attenuators ; CL, cylindrical lens.

図-4 4光波混合計測の実験装置構成²³⁾

図-5 4光波混合計測の計測結果²³⁾

に発展すると期待できる.

すでに、レーザー計測方法が、高価な計測装置かつ 実験室レベルの分光計測に使用していた時期が終わり つつあり、次第に高機能な制御センサーとして工学的 に用いられ始めていると言っても過言ではない、今後、 実環境でのシステム運用のノウハウが蓄積されてくれ ば、燃焼の現象を理解するばかりか、電気的な制御装 置に置き換わって、光制御が用いられるようになるで あろう.また、光通信技術の分野で進んでいる技術、 たとえば、半導体光増幅やファイバ増幅の原理等を燃 焼の計測制御に応用するとさらにその汎用性、工学性 は飛躍的に高まってゆくものと考える.

参考文献

- 岡田 龍雄,前田 三男, "パルスレーザーデポジッションプロセスのレーザー分光計測,"レーザー研究, vol. 22, pp.160-171, (1994).
- 2) 渡部 俊太郎, "高ピーク出力レーザーとその応用,"応 用物理, vol. 64, pp. 868-877, (1995).
- 3) 鷲尾 邦彦, "LD励起高出力固体レーザーの新展開," レーザー研究, vol. 24 pp. 316-323(1996).
- 4) J. D. Bradshaw, M. O. Rodgers, and D. D. Davis,

"Single photon laser induced fluorescence detection of NO and SO_2 for atmospheric conditions of composition and pressure, " Appl. Opt., vol. 21, pp. 2493-2500 (1982).

- R. K. Hanson, J. M. Seitzman, and P. H. Paul, "Planar laser-fluoresce imaging of combustion gases," Appl. Phys. B, vol. 50, pp. 450-461(1990).
- 6) T. J. Anderson, G. M. Dobbs, and A. C. Eckbreth, "Mobil CARS instrument for combustion and plasma diagnostics," Appl. Opt., vol. 25, pp. 4076-4085 (1986).
- W. Reckers, L Huwelk, G. Grunefeld, and P. Andersen, "Spatially resolved multispecies and temperature analysis in hydrogen flames," Appl. Opt., vol. 32, pp. 907-918 (1993).
- R. A. Fisher, Ed., Optical Phase Conjugation(Academic Press, New York, 1983).
- J. Pender and L. Hesselink, "Phase conjugation in a flame," Opt. Lett. vol. 10, pp. 264-266(1985).
- P. Ewart and S. V. Oleary, "Detection of OH in a flame by degenerate four-wave mixing," Opt. Lett. vol. 11, pp. 279-281(1986).
- 11) 佐々木 孝友, "新固体レーザ材料と非線形光学結晶," 応用物理, vol. 64, pp. 878-887, (1995).
- 12) 佐々木 孝友, "高効率新固体レーザ,"オプトロニクス, vol. 157, pp. 55-65, (1990).
- 13) 浜野 靖徳,小原 正孝,藤森 俊郎,山口 滋,佐藤 順一,"小型可搬型LIF測定装置の開発,"石川島播磨技 報,Vol. 6, No. 2, pp. 84-90, (1996).
- W. Lenth, "Optical heterodyne spectroscopy with frequency-and amplitude-modulated semiconductorlasers," Opt. Lett., vol. 8, pp. 575-577(1983).
- 15) 岡 美智雄, 久保田 重夫, "全固体高出力コヒーレント 紫外光源,"応用物理, vol. 64, pp. 912-915, (1995).
- 16) 古賀 隆治,和田 修己,小坂 恵, M. Bouzidi,佐野 博也,"高速掃引による長光路大気ガス分光分析法,"光 学,vol. 18, pp. 74-75, (1989).
- 17) 木谷 恵一,林 孝, "アバランシェフォトダイオードを 用いた光子計数法による可視及び赤外極微弱光の検出," 光学, vol. 13, pp. 131-139, (1984).
- 18) H. Dautet, P. Deshamps, B. Dion, A. D. MacGregor, D. MacSween, R. J. McIntyre, C. Trottier, and P. P. Webb, "Photon couting techniques with silicon avalanche photodiodes," Appl. Opt., vol. 32, pp. 3894-3900 (1993).
- 19) EGG Canada, EGG Judson及びSBRC社データシート
- 20) The photonics design and application handbook, Laurin Publication, (1996),及び木内 雄二著"イメージセンサーの基礎と応用,"日刊工業新聞社(1991)
- 小山 二三夫,"半導体光増幅器,"応用物理,vol. 64, pp. 13-18, (1995).
- 22) 水戸 郁夫、石川 信, 深谷 一夫, "光ファイバー増幅 器励起用高出力半導体レーザー,"応用物理, vol. 64, pp. 2-12, (1995).
- 23) P. Ewart and M. Kaczmarek, "Two-dimensional mapping of temperature in a flame by degenerate four-wave mixing in OH," Appl. Opt. vol. 30, pp. 3996-3999(1991).
- 24) R. L. Farrow, D. J. Rakestraw, and T. Dreier, "Investigation of the dependence of degenerate four-wave mixing line intensities on transition dipole moments," J. Opt. Soc. Am. B, vol. 9, pp. 1770-1777(1992).