▌研究論文 ■

トカマク型核融合動力炉の経済性及び環境適合性に関する 定量的評価研究

Quantitative Analysis of Economy and Environmental Compatibility of Tokamak Fusion Power Reactors

時松宏治*•本藤祐樹*****•岡野邦彦****** Koji Tokimatsu Hiroki Hondo Kunihiko Okano 小川雄一***•桂井 誠**•山地憲治**** Yuichi Ogawa Makoto Katsurai Kenji Yamaji (原稿受付日1999年10月18日,受理日2000年2月9日)

Abstract

The current worth of the economy, energy gain, carbon dioxide (CO_2) emission, and waste disposal of tokamak fusion power reactors are quantitatively evaluated compared with other current Japanese energy sources. The following results were obtained : (1) CO₂ emission intensity (i.e., CO₂ emission per unit kWh) from the International Thermonuclear Experimental Reactor-Engineering Design Activity (ITER-EDA) scale power reactor (referred to here as the ITER-like reactor), whose physics performance is conventional, can be 25% lower than that of a common household photovoltaic. The energy gain of the ITER-like reactor is comparable to that of a coalfired power plant. The cost is four times higher than that of a fission reactor; however, note that this cost evaluation is based upon FOAK (first-of-a-kind) cost evaluation. (2) The CO₂ emission intensities and energy gains of RS and ST reactors are comparable to those of fission reactors. (3) Radioactive waste disposal volume for the ITER-like reactor is similar to that for a fission reactor. We believe that continuing tokamak fusion research and development is worthy, since tokamak fusion is an environmentally compatible future technology.

1. 緒 言

1951年にスピッツァー博士が核融合炉発電のアイディ アを考案して以来45年間,核融合開発研究は臨界プラ ズマ条件(核融合炉への入力パワーと核融合反応によ り得られるパワーが等しくなる条件)を目指して研究 開発を進めてきた.この臨界プラズマ条件はEU連合 のJET装置¹⁾と日本原子力研究所のJT-60U装置²⁾で 達成された.またJET装置と米国プリンストンプラ

* 東京大学大学院工学系研究科電気工学専攻博士課程 (現在は働地球環境産業技術研究機構研究員) ** ″ ″ 教授 *** ″ ″ システム量子工学専攻助教授 **** ″ 新領域創成科学研究科先端エネルギー工学専攻教授 〒113-8656 東京都文京区本郷7-3-1 *****働電力中央研究所経済社会研究所主任研究員 〒100-8126 東京都千代田区大手町1-6-1大手町ビル7F ******、働電力中央研究所 狛江研究所原子カシステム部 上席研究員 〒201-8511 東京都狛江市岩戸北2-11-1 ズマ物理研究所のTFTR装置では実際の核融合反応 を模擬して重水素と三重水素を用いたDT実験を行っ ている³⁾.

さらに自己点火条件を目指した国際熱核融合実験炉 ITER (International Thermonuclear Experimental Reactor)の詳細設計⁽¹⁾が完了し,現在の物 理・工学的知見を基に実験炉の次の原型炉や動力 炉^{5.6)}の概念設計が提案される段階まできた. 通産省 の地球再生計画の再構築⁽¹⁾でも革新的エネルギー技術 として核融合は期待されている. 従って臨界条件を達 成し,実験炉の詳細設計が完了し,動力炉が構想でき るトカマク型核融合炉の現段階において,エネルギー 源としての評価研究を行うことは決して時期尚早では ない.

以上の考えの基で筆者らはトカマク型核融合動力炉 の発電原価を最小にする研究⁸⁾と、核融合界で十分基

第14回エネルギーシステム・経済・環境コンファレンス (1998年1月29~30日) にて発表 準となり得る実験炉ITERのコスト計算手法により動 力炉の直接建設費と発電原価の再評価,さらにトカマ ク型核融合炉のライフサイクル分析⁹⁾を行ってきた. そこで本論文ではこれらをまとめ更に最新の炉設計仕 様に基づいた再分析を行ない,トカマク型核融合炉の 現時点でのエネルギー源としての評価について述べる.

2. 本研究に用いた炉設計パラメータ

本研究では実験炉ITER,保守的物理性能動力炉 ITER-like, 逆転シア配位²⁾と呼ばれる先進的物理性 能を用いた動力炉RS型(Reversed Shear:逆転シ ア配位を用いたトカマク炉)、さらに革新的物理性能 を用いた動力炉ST型(Spherical Tokamak: 球形 トカマク炉)を対象とする.動力炉の送電端電気出力 はいずれも100万kW,設備稼働率75%,運転年数30 年としている. 炉心プラズマパラメータの計算には ITER Physics Guidelineに基づいており, トロイ ダル・コイルの計算にはD型一定応力の3円弧近似に より計算している、表1に炉設計パラメータを示す、 ITER-like 炉は実験炉ITERの物理性能を僅かに向上 させることで送電端出力を100万kWにパワーアップ した炉である. RS炉のモデルはCREST (Compact REversed Shear Tokamak)¹⁰, ST炉のモデルはA RIES (Advanced Reactor Innovative Engineering Study) -ST^{II)} としており、これらプラズマパラ メータ、装置コンポーネントの体積データ等を用いて 評価を行った. RS炉とはシアと呼ばれる物理量が, プラズマ小半径方向に負の変化率を持つことである. この負シアのことを逆転シアとも呼び、これによりプ ラズマ周辺部に電流勾配が生じることでプラズマ中心 付近の磁気閉じ込めの効率(プラズマを取り巻く磁場 が持つ圧力により、プラズマ自身が持つ圧力を閉じ込 める,その効率)と自発電流の割合(変流器コイルや 加熱装置を用いなくても、プラズマ粒子の動きをコン トロールすることにより自発的に流れる電流の割合) が高くなる. 逆転シア配位により磁気閉じ込めの効率 の改善度合いを表すトロヨン係数が実験的に3~4程 度,計算機シミュレーションで5を超え,自発電流割 合が実験的に75%程度まで、シミュレーションで90% 超まで得られている.

ST炉とはアスペクト比Aを1.1~2.0まで極端に下げ た炉形式であるため(通常はA=2.5~4.5程度),低 アスペクト比トカマクLow-Aspect-Ratio Tokamak とも呼ばれる.ST炉は低アスペクト比化により,(1)

表1 炉設計パラメータ

	ITER	ITER-like	RS	ST
プラズマ大半径 [m]	8.4	8.4	5.1	3.2
アスペクト比	2.91	2.91	3.0	1.6
トロヨン係数 [%mT/MA]	2.2	2.7	4.95	7.38
自発電流割合 [%]		28.9	93.5	95.8
構造材	SUS	フェライト鋼	フェライト鋼	フェライト鋼
冷却材	水	水	水	ヘリウム
コイル系 [m³]	806	÷	402	1564
ブランケット [m³]	940	Ļ	382	706
遮蔽体 [m ³]	2050	4	908	406
ダイバータ [m³]	91	←	33	-
核融合出力 [MW]	1500	40.34	2879	2979
熱電気変換効率 [%]	34.5	34.5	34.5	45.0
総電気出力 [MW]	_	1621	1117	1518
所内率 [%]	_	38.3	10.5	34.1
送電端出力 [MW]	_	1000	1000	1000
設備稼働率 [%]	-	75	75	75

炉装置サイズが非常にコンパクトで,(2) プラズマ の位置・形状制御が複雑なコイル配置を用いず可能で あること,(3) 高いプラズマ閉じ込め性能等が可能 であることが指摘されていた¹²⁾.最近英国の小型実験 装置START (Small Tight Aspect Ratio Tokamak)による実験でもトロヨン係数4,全ベータ30 %超,軸上トロイダルベータ約50%という優秀な物理 性能を実証した.STは未だ初期実験段階であるが, 今後MA (メガアンペア) 級の実験装置計画及び建設 が進められており,その優れた高物理性能を用いた小 型で高経済性動力炉の可能性が期待されている.

3. 評価方法

- 3.1 経済性
- 3.1.1 直接建設費の計算法

核融合炉内コンポーネント(超伝導コイル及び支持 構造物等,遮蔽体,ブランケット,ダイバータ)につ いては体積×体積密度×重量単価による積み上げ方法 により,電流駆動系は加熱パワー×パワー単価により, それ以外の熱輸送系,核融合炉建屋,その他付属設備 については基準熱出力ないし基準核融合炉内コンポー ネントの総体積に対するスケーリングファクターを基 準コストに乗じることにより,それぞれコストを求め る.炉内コンポーネントのコストデータ等を表2,電 流駆動系その他のコスト評価法を表3にそれぞれ示す.

核融合炉本体内コンポーネントはITER-TAC4報 告書¹³⁾を参照した.ITERのコストデータを基準にし ているので量産効果がない1基目評価と考えて良い. なお,ITERは実験炉であり本研究で用いると想定さ れる先進材料に関するコストデータは文献¹³⁾にはない.

	212 // 13	· · · · · · · · · · · · · · · · · · ·					
コンポーネント	項目	材料	重量密度"	体積割合	重量単価。		
	巻線部	Nb₃Sn	5.1	0.368	321.6		
(N.D. 1)	カン	SUSetc.	16.4	0.632	8.38		
IF COIL	加工コスト	TF coil 全重量	TF coil 全重量に対し68.68(\$ /kg)を加算				
	その他加工コスト	1.015を全コストに乗	毛じる(for b	us work an	d tooling)		
		SUS	8.0	0.61	30		
	+# '4.++	フェライト鋼	8.0		33 ^(c)		
	一件 垣 村	バナジウム鋼	6.1	0.2	146 ^(c)		
		シリコンカーバイド	3.2		195 ^(c)		
ブランケット	銅鋼/増殖材	Copper/Li ₂ O	8.96/2.02	0.019/0.5	10/500		
	コーティング/	D	1.87	0.003/0.2	625		
	増倍材	Baryllium	道具		587.1		
	30000(\$ / m ²)(第1壁のため,道具も含む)						
	60600(\$/m³)(組立て, テスト, 検査費用)						
		SUS	8.0		35.5		
		フェライト鋼	8.0		39.1 ^(c)		
遮蔽体 ^a	構造材	バナジウム鋼	6.1	1	172.1 ^(c)		
		シリコンカーバイド	3.2		230.4 ^(c)		
		アルミニュウム	2.3		15.5		
		SUS	8.0		20		
	*** ***	フェライト鋼	8.0		22 ^(c)		
ダイバータ	何 何 垣 付	バナジウム鋼	6.1	0.928	97.4 ^(c)		
		シリコンカーバイド	3.2		129.8 ^(c)		
	A1-3 A552	213	8.96	0.0464	12.25		
	黄河 黄河	國可	組立て加工と道具		285.5		
	ベリリウム		1.87	0.0258	843.9		
	ブラシ	~ , , , , , , , ,	組立て加工と道具		843.9		

表2 炉内コンポーネントのコスト評価データ

(a) 単位:t/m³,(b) 単位:\$/kg('93年US\$),(c) ASC (ARIES Systems Code [11])からの仮定値,
(d) ST炉ではアルミニュウム遮蔽体がトロイダルコイルを兼ねている.重量密度と単価はASCの値.

表3 ′	電流駆動,	熱輸送,	核融合炉建屋,	その他付属設備のコス	▶計算方法
------	-------	------	---------	------------	-------

Items	ITER	計 算 式	含 ま れ る 項 目
電流駆動	388	4.6\$/W	電流駆動とその電源など
熱輸送	264	$264 \cdot \left(\frac{P_{th}}{4699}\right)^{0.6}$	熱輸送と熱タンクなど
核融合炉 建 屋	1834	$1834 \cdot \left(\frac{V_{FI}}{5553}\right)^{0.67}$	主核融合炉建屋,真空システム,コイル電源,冷凍機系
そ の 他 付属設備	872	$2189 \cdot \left(\frac{P_{th}}{4699}\right)^{0.6}$	土地',その他建物',燃料と廃棄物扱い,計測及び制御系,液体・ガス配管, タービン',組立て機械,遠隔操作機械,その他プラント機械'など

(注)単位はM\$。 V_{Fb}, Pu はそれぞれ核融合炉内コンポーネントの総体積,全熱出力を意味する.

・の項目はITERには含まれない.

このためフェライト鋼、バナジウム鋼、SiCの重量単 価はARIES System Code (ASC)^{III)} で用いている データを参照し、重量単価はITERのSUS鋼の重量単 価を基準にしASCでのSUS鋼に対するこれら構造材 の重量単価比率を乗じて算出した値を仮定して用いた.

核融合炉建屋には建屋,真空系,コイル電源,冷凍 系が含まれる. 付属設備には廃棄物処理, 燃料・トリ チウム系,計測系,配管,製造加工道具,遠隔機器装 置,土地,建屋,タービン,電気設備等が含まれる. 3.1.2 発電原価の計算法

直接建設費を用いて発電原価は次式で計算する.

$$COE = \frac{C_c \cdot F_{cr} + C_{om} + C_{scr} + C_{fuel}}{P_e \cdot 8760 f_{ave}} + C_{dis} + C_{dec}$$

 C_e は総資本費, $F_{\rm er}$ は資本回収係数, $C_{\rm em}$ はメンテナンス費, $C_{\rm are}$ は定期交換費, $C_{\rm fuel}$ は燃料費, P_e は送電端出力, $f_{\rm are}$ は設備利用率, $C_{\rm de}$ は放射性廃棄物処理費用, $C_{\rm dec}$ は廃炉費用である.

発電原価の計算に用いられる直接建設費は3.1.1の とは異なりGeneromak モデル¹⁰ に準じている.文 献¹⁰ による直接建設費の計算法は、コイル系について は20%の余裕度を持たせている点と、電流駆動につい ては全コストのうち定期交換物を25%とし残りの75% を直接建設費に算入する点、3ヶ月間の初期装荷分ト リチウムコストも直接建設費に含める点が前節の方法 と異なる.

総資本費は直接建設費に間接費、建設中利子を加え

たものである.本研究では直接建設費に間接費倍率, 建中利子倍率を乗じる方式を取る.メンテナンス費は [直接建設費+定期交換物量の初期装荷分の費用] に 対する割合で与える.これら間接費倍率,建中利子倍 率,資本回収係数,メンテナンス費での割合は日本の 軽水炉の実績値を用い,それぞれ1.05,1.1,0.12, 0.04とした.

燃料費については、重水素は核融合反応回数に応じ た消費を考慮しており、トリチウムについては自己充 足を仮定しており燃料費には含めていない. 放射性廃 棄物処理費用と廃炉費用は Generomak モデルで用 いられている「米国での分裂炉の実績値」を用いて、 それぞれ1.0 (mill/kWh), 0.5 (mill/kWh)とす る.

3.2 エネルギー収支とCO₂排出量

3.2.1 本研究の検討の前提

ェネルギー収支分析の検討範囲は炉の建設,炉の運 転期間中の定期交換,及び消費燃料を考慮したが,100 年程度の放射能残存期間の炉内構造材保管は考慮して いない.

燃料である重水素は窒素と水素からアンモニア - 水

素系二重温度交換法を用いてアンモニアと共に合成す るプラントにより製造されることを仮定している.こ のため、採掘は考慮せず燃料製造に要する燃料製造エ ネルギーのみを考慮している.燃料精製と輸送に要す るエネルギーは算入が困難なため、文献¹⁵⁰と同様に燃 料製造エネルギーの20%としている.燃料消費につい てはトリチウムの自己充足を仮定しトリチウムの初期 装荷分と重水素の消費を考慮した.重水素のエネルギー 原単位は文献¹⁶⁰の値を用い、トリチウムは重水素と同 じ値とした.

資材については、各コンポーネントに用いられる原 鉱石の採掘と精鉱に要するエネルギーはデータが存在 しないため考慮していない.しかし、鉱石から原材料、 中間材料、加工材料までの加工に投入される素材エネ ルギーは投入物量にエネルギー原単位を乗じることで 考慮した.コンポーネント製造に要する製造エネルギー を考慮にいれた計算は可能だが、本研究では文献¹³⁰ と 同一基準で比較するために製造エネルギーを計算には 参入していない.建設組立と輸送に要するエネルギー は文献¹⁵⁰ 同様に素材エネルギーと製造エネルギーの和 の20%と仮定した.

表 4 各コンポーネントの使用材料,エネルギー収支,CO₂排出量の検討のために用いられた 材料,エネルギー原単位,CO₂排出量原単位

項目		使用材料	エネルギー収支,CO₂排出 量の検討のために用いられ た材料	ェネルギー 原単位®	CO₂排出 量 [™] 原単位
切仁道ってす	Nb₃Sn 巻線		NbTi 巻線 [®]	49.2	30.7
旭伝等 コイル	SUS31	6等(Fe66, Ni22, Cr18, Mn2, Mo2)	SUS鋼 ^(c) (Fe 31.2, Ni 33, Cr30.7)	35.2	7.5
		SUS 316	SUS鋼	35.2	7.5
		フェライト鋼(HT-9)(Fe87, Cr8, W1)	Fe-Ni-Cr 鋼 ^(e) (Fe 86.5, Ni 9, Cr 3)	82.3	8.7
ブランケット	構造材	バナジウム鋼(V-5Cr-5Ti) (V90, Cr5, Ti5)	Ti 64 ^(f)	299	83.7
遮蔽体		シリコンカーバイド(Si 50, C50)	シリコンカーバイド (8)	50	14.0
ダイバータ		銅鋼	Cu 99, Cr 1 ^(e)	9.2	3.2
		Li2O	Li2, O1 th	21.2	9.68
		ベリリウム	ベリリウム®	860	240.8
		アルミニュウム	アルミニュウム ⁽ⁱ⁾	22.97	7.55
拔勒人后建民		鋼 (2086ton)	粗鋼	4.68	1.41
	電気設備		電気設備	1112 ^(c)	344.3 [@]
付属設備	鉄鋼(43656ton)		粗鋼	4.68	1.41
		コンクリート (983390ton)	コンクリート®	0.15	0.11
熱輸送系		雷岛逃进	雪雪亞備	1119(0)	344 3(0)
雷法取制么	电风設備			1112	044.0
电加强到不	SUS等		電子計算機"	85.2	21.3

参照文献

単位: (a) Gcal/t-meterial, (b)t-CO₂/t-material, (c) Gcal/M\$, (d); t-CO₂/M\$

(e)科学技術庁資源調査所,『資源・エネルギー面からの超電導技術に関する調査』,昭和63年3月
(f)島津康男,『核融合炉 SYSTEM ASSESSMENT MANUAL』,エネルギー特別研究(核融合),昭和61年3月

(g)神崎康次,『核融合炉実現条件に関する調査分析』,未来工学研究所,1978年(未刊)

(h)大井健太,通産省工業技術院四国工業技術研究所,私信

(i) 本藤裕樹、『産業連関分析による財・サービス生産時のエネルギー消費量とCO2排出量』, 電中研報告 Y95013

核融合特有の定期交換物の定期交換頻度は経済性評 価と同様である.核融合固有の定期交換物(ブランケッ ト,ダイバータ,電流駆動装置)以外の設備運用中の 定期交換については,他の発電プラントの研究事例¹⁵⁾ と比較するため全設備が30年間で1回再更新されると 仮定している.

3.2.2 素材エネルギー算出に用いたデータ

素材エネルギーの算出に用いた単位重量またはコス ト当たりの投入エネルギーを表4に示す. 核融合炉特 有のコンポーネントのうち, 超伝導コイル, SUS鋼 材,フェライト鋼, 銅合金に関するエネルギー原単位 としては, 超電導発電機Super-GMに関するエネル ギー収支分析報告書¹⁷⁾を用いた. ブランケットに用い られるLi₂Oは海水からのLi採集の最新概算値(Li₂-CO₃1トン製造するのに1万kWh)¹⁸⁾用いて算出した. バナジウム鋼はチタン合金の値¹⁹⁾を, B₆とSiCは未来 工学研究所による核融合のエネルギー収支分析の報告 書¹⁶⁾を利用した.

詳細なコンポーネントの積み上げが不可能な核融合 炉建屋と炉本体関連設備の鉄筋やコンクリートの量に ついては過去の研究例を参照した.電流駆動装置の物 量は動力炉設計の電流駆動装置から概算を見積もった. エネルギー原単位には文献⁸⁰⁰中の電子計算機の値(85.2 Gcal/t)を用いて評価を行う.熱輸送系,電流駆動, 核融合炉建屋と炉本体関連設備には文献⁸⁰⁰中の『電力 施設建設』を単位コスト当たりの投入エネルギーによ り算入した.

3.2.3 CO₂排出量及び削減コストに関する検討

CO₂排出量の分析範囲,方法はエネルギー収支分析 と同じである.各コンポーネントのCO₂排出原単位を 表4に示す.表4のデータのうち電気設備,粗鋼,コ ンクリートは文献^{®®}による産業連関法を用いて既知と してわかっているものである.また特殊材料であるバ ナジウム鋼,SiC,Beについてはそれぞれのエネルギー 原単位から,1990年の日本全体のエネルギー消費量と CO₂排出量^{®®}の比0.28(t - CO₂/Gcal)を用いて CO₂排出量を求めた.CO₂削減コストの算出は文献¹⁵ と同様である.

3.3 放射性廃棄物量

放射性廃棄物量は核融合炉がエネルギー源として受 容されるための条件として考慮されるべき事である. 核融合炉からは核分裂炉と違ってプルトニウムやTRU (Trans Uranium Element:超ウラン元素)などの 放射性廃棄物は廃棄されない.しかし14MeV等の中 性子により放射化されたプラズマ周辺の内部コンポー ネントは放射性廃棄物となる.また構造物の組成によ るが,放射化構造物の成分には¹⁴C,¹⁰Be,⁵³Mn,¹⁸⁶Re 等の半減期の長い(103~106年)核種が,無視し得る 程度の極僅かの放射能レベルで含まれることがありえ る.

本研究では核融合動力炉の炉寿命間に廃棄される放 射性廃棄物の物量について行う.核融合炉からの放射 性廃棄物の物量は30年間の炉運転期間中に核融合炉へ 装荷した炉コンポーネントの体積の総和で評価する.

遮蔽体は理想的に中性子を遮蔽し、遮蔽体よりも外 側のコンポーネントは放射化しないと仮定する.遮蔽 体本体と永久ブランケットは30年間の運転中に1度交 換すると仮定する.プラズマに近い交換ブランケット 及びダイバータ、ST炉のセンターポストの物量は、 経済性と同様の炉運転期間中の定期交換回数を考慮し

表 5	核融合炉と他のエネルキー源との経済性(1基日評価)	エネルキー比,	CO₂排出童原単位,	放射
	性廃棄物量の比較			

			核融合炉		核分裂炉	7 4	INC	-14-14	十四回动
		ITER-like (保守的)	RS型 (先進的)	ST型 (革新的)	(ワンス・ スルー)	石灰 火力	上NG 火力	лк <i>Л</i> ј	太陽電池 (家庭用)
単位電気出力 直接建設費[]	b当たりの 万円∕kW]	121	61	79	31	30	20	60	200 (80)
発電原価[円	/kWh] **	44	21	25	10	11	10	14	222 (89)
エネルギー比**		14	28	32	24	17	6	50	9
CO₂排出量原単位 [g-CO₂/kWh] **		43.9	22.5	22.2	20.9	990	653	17.6	58.7
CO₂削減コスト [万円/t-CO₂]		8.23	2.76	3.70	0.26	4.8°	2.1*	0.93	52 (18)
放射性廃棄物 量 [m³]	Operation	1.0E + 4	4.8E+3	1.5E + 4	1.2E + 4	1	—	—	—
	Front/ back ends		不明		6.6E+5	_	_	_	_

*回収装置付き **4 評価結果の「為替レート及び10基目評価の結果の相違」を参照

て算出した.フロントエンド即ち炉の建設,初期装荷 トリチウムの製造・運搬・装荷,バックエンド即ち炉 の解体により発生する放射性廃棄物,真空容器に近接 する部品など放射化される放射性廃棄物などについて は、合理的な算出方法が無いのが現状である.

4. 評価結果

単位発電電力量当たりの直接建設費,発電原価,エ ネルギー収支比,CO₂排出量及びCO₂削減コスト,放 射性廃棄物量についての,他のエネルギー源との比較 を表5に示す.核融合以外の値は資源エネルギーデー タ集^{a1} と電中研報告¹⁵ から引用している.為替レート は文献²¹ と同様1\$=125円としている.

経済性

今回の1基目(FOAK; First-Of-A-Kind)評価 によると核融合はST炉であっても太陽光以外のエネ ルギー源よりもまだ高コストである.RS炉やST炉が 仮定した75%の設備稼働率が達成可能であっても現時 点では経済的競合性を持つとは言い難い.ただし後述 のように10基目評価(TOAK; Tenth-Of-A-Kind) コスト²²⁾では、コストが半減する可能性があり、コス ト競争力が無いとは言えない.

エネルギー収支とCO₂排出量

核融合のエネルギー比は,ITER-like炉で石炭火力 や太陽光よりは良いが核分裂を下回る.RS炉,ST炉 では核分裂炉を幾分上回る.なお,過去の研究⁽⁶⁾での エネルギー比は35と本研究の結果より値が高い.しか し文献⁽⁶⁾での核融合炉の送電端出力は,本研究でのそ れより送電端出力が7割ほど高い.この送電端出力の 相違が、エネルギー比相違の最大の理由と考えられる.

またCO₂排出原単位については、ITER-like炉では 太陽光より優れている程度であるが、RS炉、ST炉で は水力や核分裂炉に次ぐ優れたCO₂排出量原単位とな る. CO₂削減コストについては、核融合は高コストで、 CO₂排出量も原子力や水力よりも大きいのでCO₂削減 コストも高くなった.しかしそれでも太陽光よりも安 く、CO₂回収装置付き石炭火力発電所並である.

放射性廃棄物量

核融合炉からの放射性廃棄物の誘導放射能レベルに ついて現在のところ分類がなされていないので本研究 では省略し物量のみについて記す.炉形式による違い は、物理性能の向上に伴う炉のコンパクト化に起因す る.即ちコンポーネント体積の削減と同時に中性子壁 負荷の増加に伴う定期交換頻度の増加との関係で決ま る. ITER-likeと比較してRS炉は物量削減となった が、ST炉では逆に増加する結果となった。

運転期間中の放射性廃棄物の物量についてはほぼ分裂 炉と同程度の量である.核融合炉のフロント・バック エンドからの放射性廃棄物量については現時点では不 明である.テーブルには参考のために分裂炉からのフ ロントエンド,バックエンドからの放射性廃棄物量²³⁾ についても記載した.文献²³⁾のTABLE Xによると, 核分裂炉のバックエンドからの所謂高レベル放射性廃 棄物は1000m³に満たない.大部分がフロントエンド のウラン採鉱時の残滓である.なお核融合炉からの放 射性廃棄物の放射能レベル,物量,処分コスト等の詳 細な検討²⁴⁾がある.放射性廃棄物の体積見積もりはほ ぼ同様な結果となっている.

為替レート及び10基目評価の結果の相違

海外通貨で表示されたコストを日本円に変換する際、 為替レートの設定により結果に大きな相違が生じるこ とが多い.本研究では、1 \$ =125円を基本為替レー トとしたが、仮に1 \$ =200円とするとコストは約60 %増加、CO2排出原単位は約30%増加、エネルギー比 は25%減少する.また過去の動力炉設計ベースのコス ト(10基目動力炉コストベース²⁰)ではコストは約半 減、CO2排出原単位は約10%減、エネルギー比は約15 %増加する.

5. 本研究のまとめ

緒言で述べたように核融合は特にトカマク型の物理 実験と工学技術開発の進展により、ここ10年間で知見 が遥かに高まった.これに伴い実験炉に関する詳細な 物理設計の精度も高まり、より確度が高い動力炉の概 念設計も多数なされるようになった.しかしながら燃 焼プラズマに関する知見は全てにわたって十分とは現 状ではいえない.これら課題については実験炉によっ て多くの科学的知見が得られるはずだが、それ以降の 原型炉・動力炉へのステップアップに関しては、さら に例えば材料選択などの工学的諸課題を解決していか ねばならない.従ってこれら物理的工学的課題に起因 する将来の核融合動力炉の物量や経済性などの定量的 評価において不確実性が入る恐れは依然として大きい. 以上の観点から今回の評価は一試算であることに留意 頂きたい.

本研究では送電端出力100万kWトカマク型動力炉 のうち,保守的物理性能のITER-like炉,高物理性能 の先進的RS炉と革新的ST炉について,経済性,エネ

457

ルギー収支, CO₂排出量, 放射性廃棄物量の観点から, 他のエネルギー源との定量的な比較評価を行った.

この結果ITER-like炉では現状の経済性,エネルギー 比, CO₂排出量いずれをとっても太陽光よりも優れて いる.またRS炉,ST炉では現状の一基目評価のコス トでは高いが,エネルギー比,CO₂排出量原単位は他 のエネルギー源の中でも優れているワンススルー・ガ ス拡散方式による核分裂炉や水力発電と同程度に優れ ている.運転に伴う放射性廃棄物は,レベルと寿命は 異なるが体積では核分裂炉と同レベルである.

エネルギー供給源の開発という政策的観点から次の 様にまとめたい.(1)現在は高物理性能化の兆しが 実験的研究,シミュレーション研究により現れている 段階ではある.それでも(2)高物理性能を利用した RS炉やST炉であればエネルギー比,CO₂排出原単位 では十分優れている可能性があり,(3)高コスト, 放射性廃棄物が存在するという短所は材料開発等を通 じて克服することができる可能性がある.

トカマク型核融合炉がエネルギー比とCO₂排出量原 単位では優れていること,また今後更に物理面,工学 面にわたる研究開発によりコスト低減と放射性廃棄物 量削減の可能性があるため,研究開発の継続は価値が あることを主張したい.

謝辞:本研究を進めるに当たり,東大大学院工学系研 究科の近藤駿介,長崎晋也各先生,カリフォルニア大 学のR. L. Miller博士,日本原子力研究所の池田裕 二郎博士に感謝致します.

文 献

- JET Team; Fusion Energy production from a deuterium-tritium plasma in the JET tokamak, Nuclear Fusion, 32-6 (1992), 187-202.
- 2)藤田隆明;炉心プラズマ閉じ込めにおける負磁気シアーの効果(1)実験的研究,プラズマ・核融合学会誌,73-6,(1997)549-560.
- 3) R. J. Hawryluk, et. al, ; Review of recentD-T experiments from TFTR, Plasma Physics and Controlled Nuclear Fusion Research 1994, IAEA-CN-60/A1-1 (1995), 11-31.
- Technical Basis for the ITER Detailed Design Report, Cost Review and Safety Analysis; IAEA (1997).
- R. W. Conn, et., al.; Fusion Reactor Design and Technology, Nuclear Fusion, 34-5(1994), 747-768.
- 6) S. Nishio et., al.; The concept of drastically easy maintenance (DREAM) tokamak reactor, Fusion Engineering and Design 25 (1994) 289-298.

- 7)通商産業省環境立地局環境政策課編,地球環境ビジョン, (1997), 159-167, 側通商産業調査会出版部.
- 8) K. Tokimatsu, K. Okano, T. Yoshida, K. Yamaji, and M. Katsurai ; Study of design parameters for minimizing the cost of electricity of tokamak fusion power reactors, Nuclear Fusion, 38-6(1998), 885-902.
- 9)時松宏治, "Quantitative Analysis of Economy and Environmental Adaptability of Tokamak Fusion Po wer Reactors",東京大学博士論文, 1998.
- 10) OKANO, K., et al. ; "Compact Reversed Shear Tokamak Reactor with a Super-heated Steam Cycle", IAEA-CN-69/FTP-11, in proceedings of 17th IAEA Fusion Energy Conference, Yokohama, October 1998.
- MILLER, R. L; in private communication, 1999. (http: //aries. ucsd. edu/~miller/AST272a/output. html).
- 12) Y-K. M. Peng and D. J. Strickler; Features of spherical torus plasmas, Nuclear Fusion 26-6 (1986), 769-777.
- 13) The ITER Director ; Detail of the ITER Outline Design Report (The ITER-TAC4 report), ITER outline design cost estimate, San Diego Joint Work Site, (1994), S CA4 RE5 page1-25.
- J. Sheffield et. al.; Cost Assessment of a generic magnetic fusion reactor, Fusion Technology 9 (1986), 199-249.
- 15)内山洋司;発電システムのライフサイクル分析,電力中 央研究所報告Y94009,(1995).
- 16)神前康次;核融合炉実現条件に関する調査分析,未来工 学研究所(1978)未刊.
- 17)科学技術庁資源調査所;資源・エネルギー面からの超伝 導技術に関する調査,(1987).
- 18) 大井健太(通産省工技院四国工業技術研究所), 私信.
- 19) 島津康男;核融合炉 SYSTEM ASSESSMENT MAN-UAL, エネルギー特別研究(核融合), (1986).
- 20)本藤祐樹;産業連関分析による財・サービス生産時のエネルギー消費量とCO₃排出量一産業連関表のLCAへの適用について一電力中央研究所報告Y95013,(1996).
- 21)資源エネルギー庁監修,資源エネルギーデータ集1997年 版,(1997),電力新報社.
- 22)吉田智朗,七原俊也,山地憲治,宅間董,核融合実用炉 経済性解析コードの構築,電力中央研究所報告T94001, (1994).
- 23) IAEA; Assessment and comparison of waste management system costs for nuclear and other energy sources, IAEA Technical Report Series No. 366, (1994), IAEA Vienna.
- 24)田原隆志他、核融合動力炉における放射性廃棄物管理及 び処分シナリオの検討、日本原子力研究所 JAERI-Tech 97-054, (1997).